Name:

Teacher Assessment

Topic 36 - H Vectors

Section A

Finding Vectors

Grade A / A*

1. *PQRSTU* is a regular hexagon and *O* is the centre of the hexagon.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OQ} = \mathbf{q}$

Express each of the following vectors in terms of \mathbf{p} and \mathbf{q}

	\rightarrow
(a)	PO

Answer

(1)

(b)
$$\overrightarrow{SP}$$

Answer

(1)

(c)
$$\overrightarrow{SQ}$$

.....

Answer

(2) (Total 4 marks) **2.** The diagram shows two sets of parallel lines.

Vector $\overrightarrow{PQ} = \mathbf{a}$ and vector $\overrightarrow{PS} = \mathbf{b}$

 $\overrightarrow{PR} = 3\overrightarrow{PQ}$ and $\overrightarrow{PU} = 2\overrightarrow{PS}$

		\rightarrow		
(a)	Write the vector	PV	in terms of a and b	

• • • • • • • • • • • • • • • • • • • •	 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

Answer	
	(1)

		_				
(b) Write	the vector	RU	in terms	of a	and	b

••••••

(c) Find tw e	vectors	that can	be	written	as	3 a –	ł
----	--------------------	---------	----------	----	---------	----	--------------	---

(2)

(Total 4 marks)

3. ABCDEF is a regular hexagon with centre O.

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{AB} = \mathbf{b}$$

Diagram drawn accurately

- (a) Find expressions, in terms of **a** and **b**, for
 - (i) \overrightarrow{OB}

Answer	
	(1)

(ii) \overrightarrow{AC}

(iii) \overrightarrow{EC}

(b) The positions of points P and Q are given by the vectors

$$\overrightarrow{OP} = \mathbf{a} - \mathbf{b}$$
 $\overrightarrow{OQ} = \mathbf{a} + 2\mathbf{b}$

(i) Draw and label the positions of points P and Q on the diagram.

(2)

(ii) Hence, or otherwise, deduce an expression for \overrightarrow{PQ} .

Answer

(1) (Total 6 marks)

St Paul's Catholic School

3

(1)

In the diagram OACD, OADB and ODEB are parallelograms. 4.

 $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$

- Express, in terms of **a** and **b**, the following vectors. (a) Give your answers in their simplest form.
 - \overrightarrow{OD} (i)

Answer	
	(1)

 \overrightarrow{OC} (ii)

Answer	

(iii) \overrightarrow{AB}

1	Answer	
		(1)

The point *F* is such that *OCFE* is a parallelogram. (b)

Write the vector \overrightarrow{CF} in terms of **a** and **b**.

Answer..... **(2)**

What geometrical relationship is there between the points O, D and F? Justify your (c) answer.

(Total 7 marks)

(2)

5. In the diagram $\overrightarrow{OP} = 4\mathbf{a}$, $\overrightarrow{PA} = \mathbf{a}$, $\overrightarrow{OB} = 5\mathbf{b}$, $\overrightarrow{BR} = 3\mathbf{b}$ and $\overrightarrow{AQ} = \frac{2}{5}$ \overrightarrow{AB}

Not drawn accurately

(a) Find, in terms of **a** and **b**, simplifying your answers,

(i)	\overrightarrow{AB}

Answer(1)

(ii) \overrightarrow{PQ}

(2)

Answer

(b) Show clearly that points *P*, *Q* and *R* lie on a straight line.

.....

(3) (Total 6 marks)

6. *OAB* is a triangle.

X is the midpoint of AB.

Y is the midpoint of *OB*.

Z is the point on OX such that OZ : ZX = 2 : 1

$$\overrightarrow{OA} = 3\mathbf{a}, \ \overrightarrow{OB} = 3\mathbf{b}$$

(a) Find, in terms of **a** and **b**, the vectors

(i)	\overrightarrow{AY}	
	Answer	(1)
(ii)	\overrightarrow{OX}	
	Answer	(2)
(iii)	\overrightarrow{AZ}	

(b) A, Z and Y are on a straight line.

Find the ratio	AZ:ZY
••••••	
••••••	

Answer

Answer

(2)

(2)(Total 7 marks)

7. $\overrightarrow{OP} = -4\mathbf{a} + 5\mathbf{b}$ and $\overrightarrow{OQ} = 5\mathbf{a} - \mathbf{b}$.

R is a point on \overrightarrow{PQ} such that PR : RQ = 1 : 2.

	\rightarrow				
(a) Express	OR	in terms	of a	and	b.

(b)
$$\overrightarrow{PS} = \mathbf{a} + 4\mathbf{b}$$

Express \overrightarrow{OS} in terms of **a** and **b**.

(c) What **two** facts do \overrightarrow{OR} and \overrightarrow{OS} indicate about the points O, R and S?

Give a reason for each of your answers.

.....

(Total 7 marks)

(2)

b Q

M

P

A

OAB is a triangle where M is the mid-point of OB.

P and Q are points on AB such that AP = PQ = QB.

 $\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = 2\mathbf{b}$

(a) Find, in terms of a and b, expressions for

Answer

(ii) \overrightarrow{MQ}

Answer

(iii) \overrightarrow{OP}

Answer

(2)

(b) What can you deduce about quadrilateral *OMQP*? Give a reason for your answer.

(1)

(2)

9. The diagram shows a square *OAPB*. M is the mid-point of AP. N is the mid-point of BM.

AP is extended to Q where $AQ = 1\frac{1}{2}AP$

$$\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}$$

Not drawn accurately

Write these vectors in terms of **a** and **b**. (a) Give your answers in their simplest form.

> \overrightarrow{oQ} (i)

 	 ٠

Answer **(1)**

BM(ii)

 	 •

Answer **(1)**

(iii) \overrightarrow{BN}

Answer **(1)**

(iv) ON

Answer **(2)**

What can you deduce about points O, N and Q? (b) Give a reason for your answer.

(2)(Total 7 marks)

10. OPQR is a parallelogram.M is the mid-point of the diagonal OQ.

- (a) Express \overrightarrow{OM} in terms of \mathbf{p} and \mathbf{r} .

 Answer $\overrightarrow{OM} =$
- (b) Use vectors to prove that *M* is also the mid-point of *PR*.

(3) (Total 4 marks)

(1)

11. OACB is a parallelogram and M is the mid-point of BC.

 $\overrightarrow{OA} = \mathbf{a} \text{ and } \overrightarrow{OB} = \mathbf{b}$

(a) Express the following vectors in terms of **a** and **b**

	\longrightarrow
(i)	BA

Answer	
	(1)

(ii) \overrightarrow{AM}

(b) AM is extended to N, where $\overrightarrow{AN} = 2\overrightarrow{AM}$.

Show that $\overrightarrow{BN} = \mathbf{b}$

•••••	•••••	•••••	

(c) What does this tell you about the position of N?

 	•••••	

(Total 5 marks)

(2)

(1)

12. In triangle ABC, M is the mid-point of BC.

 $\overrightarrow{AB} = \mathbf{s} \text{ and } \overrightarrow{AC} = \mathbf{t}$

(a)		\overrightarrow{AM} in terms of s and t . your answer in its simplest form.	
	•••••		
	•••••		
	•••••		
		Answer	(3)
(b)		= s + t length of AB is not equal to the length of AC .	
	(i)	Write down the name of the shape <i>ABDC</i> .	
		Answer	(1)
	(ii)	Write down one fact about the points A , M and D . Explain your answer.	
		Fact	
		Explanation	
			(2)

(2) (Total 6 marks)

Success:

Target:			