Teacher Assessment



Topic 33 - H Circle Theorems

## **Section A**

## **Finding Missing Angles**

Grade B → A\*

In this section, no diagrams are drawn accurately

**1.** (a) In the diagram, O is the centre of the circle.



Write down the value of a.

Answer ...... degree

(1)

(b)



Write down the value of b.

Answer ...... degrees

**(1)** 

**(1)** 

(c) In the diagram, O is the centre of the circle.



Write down the value of c.

Answer ...... degrees

**(1)** 





Write down the value of d.

| Answer | . degrees          |
|--------|--------------------|
|        | (1)(Total 4 marks) |

**2.** (a) The diagram shows a circle with centre O.



Not drawn accurately

| Work out the size of the angle | e marked x. |         |
|--------------------------------|-------------|---------|
|                                |             |         |
|                                |             |         |
|                                |             |         |
|                                | Answer      | degrees |

(b) The diagram shows a different circle with centre O.



Not drawn accurately

| Angwar                                   | dagra |
|------------------------------------------|-------|
|                                          |       |
|                                          |       |
| Work out the size of the angle marked y. |       |

nswer ...... degrees
(1) (Total 2 marks)

**(2)** 

**3.** (a) In the diagram, O is the centre of the circle.



Not drawn accurately

| Calculate the value of <i>a</i> . |      |  |
|-----------------------------------|------|--|
|                                   | <br> |  |
|                                   | <br> |  |
|                                   |      |  |

Answer ...... degrees

(b)



Not drawn accurately

(i) Write down the value of x.

| Answer degree | es  |
|---------------|-----|
|               | (1) |
|               |     |

| (ii) | Calculate the value of <i>y</i> . |
|------|-----------------------------------|
|      |                                   |
|      |                                   |
|      |                                   |
|      |                                   |

Answer ...... degrees
(1)
(Total 4 marks)

**4.** (a) O is the centre of the circle.



Not drawn accurately

Calculate the value of *a*.

Answer ...... degrees

(2)

(b) O is the centre of the circle.

A, B, C and D are points on the circumference.

Angle  $AOC = 126^{\circ}$ 



Not drawn accurately

(i) Calculate the value of x.

Answer ...... degrees

(1)

(ii) Calculate the value of y.

.....

Answer ...... degrees

(Total 4 marks)

**(1)** 

**5.** A, B, C and D are points on the circumference of a circle. AC is a diameter of the circle.

Angle  $BAC = 65^{\circ}$ 



(a) Write down the value of x.

| Answer |  | degrees |
|--------|--|---------|
|--------|--|---------|

**(1)** 

(b) Calculate the value of y.

| ••••• | ••••• | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • | • • • • • • • • • • • • • • • • • • • • |
|-------|-------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|       |       |                                         |                                         |                                         |
|       |       |                                         |                                         |                                         |
|       |       |                                         |                                         |                                         |

| Answer      | <br>degrees |
|-------------|-------------|
| 7 1115 W C1 | <br>uczicci |

**(1)** 

(Total 2 marks)

**6.** (a) O is the centre of the circle.



(i) Find the value of x.

| ••••• | ••••• |
|-------|-------|
|       |       |

Answer 
$$x = \dots$$
 degrees

(ii) Find the value of y.

Answer 
$$y = \dots$$
 degrees

**(1)** 

**(1)** 

**(2)** 

(b) PQ and PR are tangents to the circle centre O.  $\angle QPR$  is 65°.



| alculate the size of angle QOR (marked z on the diagram). |
|-----------------------------------------------------------|
|                                                           |
|                                                           |
| Answer degrees                                            |
| (2<br>(Total 4 marks                                      |

7. (a) In the diagram, O is the centre of the circle and P, Q and R are points on the circumference. Angle  $P=25^{\circ}$ 



| Work out the size of angle $R$ . |        |         |
|----------------------------------|--------|---------|
|                                  |        |         |
|                                  | Answer | degrees |

(b) A, B, C and D are four points on the circumference of another circle. AC meets BD at X. Angle  $ABD = 56^{\circ}$  and angle  $CXD = 80^{\circ}$ 

B 56° C A 80° D

Not drawn accurately

| Work out the value of angle d          |                |
|----------------------------------------|----------------|
| Work out the value of angle $d$ .      |                |
| You <b>must</b> show all your working. |                |
|                                        |                |
|                                        |                |
|                                        |                |
|                                        | •              |
|                                        |                |
|                                        |                |
|                                        |                |
| Answer degree                          | S              |
|                                        | (3)            |
|                                        | Total 5 marks) |

8. In the diagram below, O is the centre of the circle and angle  $PSR = 100^{\circ}$ .



Not drawn accurately

| Calculate the value of <i>b</i> . |              |                 |
|-----------------------------------|--------------|-----------------|
|                                   |              | <b></b>         |
|                                   |              |                 |
|                                   |              | ···             |
|                                   | Answer degre | es              |
|                                   |              | (Total 2 marks) |

9. A, B, C and D are four points on the circumference of a circle. The lines AB and DC are produced to meet at E. Angle  $CBE = 67^{\circ}$  and angle  $BEC = 35^{\circ}$ 



What is the special name for the quadrilateral ABCD? (a)

Answer .....

**(1)** 

| (b) | Work out the value of <i>x</i> . You <b>must</b> show your working. |
|-----|---------------------------------------------------------------------|
|     |                                                                     |
|     |                                                                     |
|     |                                                                     |

Answer ...... degrees

**(3)** 

(Total 4 marks)

10. A, B and C are three points on the circumference of a circle.

The line *SAT* is a tangent to the circle at *A*.

The line *RBT* is a tangent to the circle at *B*.

These tangents meet at T.

Angle  $CAB = 47^{\circ}$  and angle  $BTA = 56^{\circ}$ 



(a) Calculate the size of angle BAT.

| <br> | <br> |
|------|------|
| <br> | <br> |
| <br> | <br> |

S

Answer ..... degrees

(2)

(b) Calculate the size of angle *ABC*.

| <br> | <br> |
|------|------|
| <br> | <br> |

Answer ..... degrees

(2)(Total 4 marks)

11. (a) A, B, C and D are points on the circumference of a circle centre O.  $\angle AOC = 130^{\circ}$ 



Not drawn accurately

Work out the size of angles ABC and ADC.

Answer Angle ABC ...... degrees

Angle ADC ...... degrees

**(1)** 

**(1)** 

St Paul's Catholic School

9

ABC are three points on the circumference of a circle centre O. (b) SCT is a tangent to the circle.

$$\angle SCA = 56^{\circ}$$
  $\angle COB = 130^{\circ}$ 

Not drawn accurately



| Find the size of angle <i>OBA</i> . |        |                            |
|-------------------------------------|--------|----------------------------|
|                                     |        |                            |
|                                     |        |                            |
|                                     |        |                            |
|                                     |        |                            |
|                                     |        |                            |
|                                     |        |                            |
|                                     |        |                            |
|                                     | Answer | Angle <i>OBA</i> = degrees |

**(3)** (Total 5 marks)

**(3)** 

(Total 4 marks)

12. The diagram shows a circle, centre O. TA is a tangent to the circle at A. Angle  $BAC = 58^{\circ}$  and angle  $BAT = 74^{\circ}$ .



Not drawn accurately

| (i)  | Calculate angle <i>BOC</i> .       |     |
|------|------------------------------------|-----|
|      |                                    |     |
|      |                                    |     |
|      | Answer Angle $BOC = \dots$ degrees | (1) |
| (ii) | Calculate angle <i>OCA</i> .       | ` , |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |
|      |                                    |     |

Answer Angle *OCA* = ...... degrees

**(1)** 

| BD a | and CL | are points on the circumference of a circle with centre $O$ . Of are tangents. $C=40^{\circ}$ and $C=40^{\circ}$ $C=40$ |     |
|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (4)  | (1)    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|      |        | Answer degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2) |
|      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (2) |
|      | (ii)   | Hence write down the value of $q$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|      |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |

Answer ...... degrees

13.

(b) The tangent DB is extended to T. The line AO is added to the diagram. Angle  $TBA = 62^{\circ}$ Not drawn accurately Work out the value of x. (i) Answer ...... degrees **(2)** (ii) Work out the value of *y*. Answer ...... degrees **(2)** (Total 7 marks) Success: Target:

Teacher Assessment



## Section B Explanation of Missing Angles

Grade A / A\*

1. In the diagram, O is the centre of the circle. A, B, C and D are points on the circumference. Angle  $AOC = 130^{\circ}$ 



(a) Calculate the value of *x*. Give a reason for your answer.

Answer *x* = ......degrees

Reason .....

(b) Calculate the value of *y*. Give a reason for your answer.

Answer  $y = \dots$  degrees

Reason .....

(2) (Total 4 marks)

**(2)** 

2. *O* is the centre of the circle.

(b)



| (a) | Calculate the value of angle $p$ .  |
|-----|-------------------------------------|
| (a) | Calculate the value of alighe $p$ . |

| Answer $p = \dots$ degrees         |     |
|------------------------------------|-----|
| Reason                             | (2) |
| Calculate the value of angle $q$ . | (2) |
| Give a reason for your answer.     |     |

Answer  $q = \dots$  degrees

Reason ......(2)

(Total 4 marks)

3. A and C are points on the circumference of a circle centre B. AD and CD are tangents. Angle  $ADB = 40^{\circ}$ .



Explain why angle ABC is 100°.

| <br> | <br> |  |
|------|------|--|
|      |      |  |
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |
|      |      |  |
| <br> | <br> |  |

(Total 2 marks)

**4.** A, B and C are points on the circumference of a circle with centre O. BOC is a straight line. Angle  $ABC = 20^{\circ}$ 



Not drawn accurately

| Work out the size of the angle marked z. Explain your answer. |                 |
|---------------------------------------------------------------|-----------------|
| -                                                             |                 |
|                                                               |                 |
|                                                               |                 |
|                                                               |                 |
|                                                               |                 |
|                                                               |                 |
| A                                                             | Answer degrees  |
|                                                               | (Total 2 marks) |

**5.** Which **one** of the following kites is a cyclic quadrilateral? Give a reason for your answer.



**6.** Points P, Q, R and S lie on a circle.

$$PQ = QR$$

Angle  $PQR = 116^{\circ}$ 



Not drawn accurately

| Explain why angle $QSR = 32^{\circ}$ . |                |
|----------------------------------------|----------------|
|                                        |                |
|                                        |                |
|                                        |                |
|                                        |                |
|                                        |                |
| (°                                     | Total 2 marks) |

7. *P*, *Q* and *R* are points on the circumference of the circle. *NPT* is the tangent to the circle at *P*.



| Calculate the value of <i>z</i> . Give a reason for each step of your | -      |        |        |
|-----------------------------------------------------------------------|--------|--------|--------|
|                                                                       |        |        |        |
|                                                                       |        |        |        |
|                                                                       |        |        | •••••  |
|                                                                       | •••••• | •••••• | •••••• |

Answer ......degrees

(Total 3 marks)

## 8. CD is a tangent to the circle at C.



| Calculate the value of $c$ .  |        |                               |
|-------------------------------|--------|-------------------------------|
| Give reasons for your answer. |        |                               |
|                               |        | <br>•••••                     |
|                               |        | <br>•••••                     |
|                               |        | <br>•••••                     |
|                               | Answer | <br>. degrees (Total 3 marks) |

| _       |
|---------|
| Target: |
|         |
|         |
|         |
|         |
|         |
|         |
|         |



Section C Proof Grade A / A\*

1. AB is the diameter of the circle, centre O. TP is a tangent to the circle at the point P. ABT is a straight line.



Angle  $BAP = x^{\circ}$  and angle  $BTP = y^{\circ}$ .

Show that y = 90 - 2x.

| You <b>must</b> explain clearly how you obtain your answer. |             |
|-------------------------------------------------------------|-------------|
|                                                             |             |
|                                                             |             |
|                                                             |             |
|                                                             |             |
|                                                             |             |
|                                                             |             |
|                                                             |             |
|                                                             |             |
|                                                             |             |
|                                                             |             |
| (Tota                                                       | ıl 4 marks) |

2. The diagram shows a cyclic quadrilateral *ABCD*. The straight lines *BA* and *CD* are extended and meet at *E*.

EA = AC

Angle  $ABC = 3x^{\circ}$ 

Angle  $ADC = 9x^{\circ}$ 



- (ii) Calculate the size of angle *EAD*.

Answer ...... degrees

(4)(Total 6 marks)

**3.** A, B and C are points on the circumference of a circle with centre O. BOC is a diameter of the circle.

Angle  $ABC = 30^{\circ}$ 



Not drawn accurately

Explain why triangle *OAC* is equilateral.

| <br> | <br> |
|------|------|

| <br>• • • • • • • • • • • • • • • • • • • • |
|---------------------------------------------|
|                                             |
|                                             |

(Total 3 marks)

4. In the diagram below points Q and S lie on a circle centre O. SR is a tangent to the circle at S.

Angle  $QRS = 40^{\circ}$  and angle  $SOQ = 80^{\circ}$ 



Prove that triangle *QSR* is isosceles.

(Total 3 marks)

5. ABCD is a cyclic quadrilateral. PAQ is a tangent to the circle at A. BC = CDAngle  $QAB = 38^{\circ}$  and angle  $BAD = 76^{\circ}$ 

Not drawn accurately



| Show that AD is para   | llel to BC.             | 1           | 11-4 -        |             |
|------------------------|-------------------------|-------------|---------------|-------------|
| Give reasons to justil | fy any values you write | aown        | or calculate. |             |
|                        |                         | •••••       |               |             |
|                        |                         |             |               |             |
|                        |                         |             |               |             |
|                        |                         | •••••       |               |             |
|                        |                         | •••••       |               |             |
|                        |                         |             |               |             |
|                        |                         |             |               |             |
|                        |                         | •••••       |               | ••••••      |
|                        |                         | •••••       |               |             |
|                        |                         |             |               |             |
|                        |                         |             |               |             |
|                        |                         | ··········· |               | (Total 4 ma |
| ess:                   |                         |             | Target:       |             |
|                        |                         |             |               |             |
|                        |                         |             |               |             |
|                        |                         |             |               |             |
|                        |                         |             |               |             |
|                        |                         |             |               |             |