Name:

Teacher Assessment

Topic 25 - H Approximations

Section A Rounding Grade E → C

1.	Write	e 15.2864 to 2 decimal places.	
		Answer	
2.		works out the answer to 23.6×36.2 on a calculator.	culator. © 7897 © 456 × % 123 - √ 0 • = +
	(a)	Round her answer to the nearest 10.	
		Answer	(1)
	(b)		(1)
	(c)	Round her answer to one decimal place. Answer	(1) (Total 3 marks)
3.	Write	e 34.849 correct to 1 decimal place.	
			Answer(Total 1 mark)
4.	(a)	(i) Write 86.3624 to 1 decimal place.	Answer(1)
		(ii) Write 86.3624 to 3 decimal places.	Answer(1)

	(c)	Write 378 to 1 significant	figure.		
				Answer	
					(1) (Total 6 marks)
5.	(a) Re	ound to one significant figur	re		
	i.) 3	37.5		Answer	
	ii)	34 320		Answer	(1)
	11.)	34 320		Allswei	(1)
	iii.)	0.0851		Answer	(1)
	(b) R	ound to two significant figu	res		(*)
		18 320		Answer	
	,				(1)
	ii.)	5.9641		Answer	(1)
	(c) Re	ound to three significant fig	ures		
		ound to three significant fig			
	i.) 7	740 923	Answer		(1)
	i.) 7		Answer		(1)
	i.) 7	740 923	Answer		
	i.) 7	740 923	Answer		(1)
	i.) 7	740 923	Answer		(1)
	i.) 7	740 923	Answer		(1)
	i.) 7	740 923	Answer		(1)
Succ	i.) 7	740 923	Answer		(1)
Succ	i.) 7	740 923	Answer		(1)
Succ	i.) 7	740 923	Answer		(1)
Succ	i.) 7	740 923	Answer		(1)

Topic 25 - H Approximations

Section B Estimating Grade C

Estimate the value of	$\frac{505.3 \times 1.9}{43.93 + 58.2}$	
	Answer	(Total 2 ma
	the of $\frac{59 \times 192}{29}$	
	Answer	(Total 2 ma
Find an approximate v	alue of $\frac{48.8 \times 5.22}{(10.13)^2}$ You must show all your worki	·
	Answer	(Total 3 ma
Hannah, Gemma and J	o use their calculators to work out the value of ——	8.78 × 0.47
Hannah gets 142.07, G	emma gets 14.207 and Jo gets 3.138	
Use approximations to	show which one of them is correct. You must show	your working.

(Total 3 marks)

ose a	approximations to snow which of the following calculations gives the	uiggei aliswei.
(a)	$59.4 \div 0.307$ (b) $80.16 \div 0.481$	
	You must show your working.	
	Answer	(Total 3 marks)
Use a	approximations to estimate the value of $\frac{316 \times 4.03}{0.198}$ You must show	your working.
•••••		
•••••		
	Answer	(Total 3 marks)
Use a	approximations to estimate the value of $\frac{8012}{48.61 \times 0.397}$	
	48.61×0.397	Success:
•••••		
•••••		
	Answer	
		(Total 3 marks)
Usa n		(Total 3 marks)
Use a	998	
Use a		(Total 3 marks) ow your working.
Use a		(Total 3 marks) ow your working.
Use a	approximations to estimate the value of $\sqrt{\frac{9.98}{0.203}}$ You must sho	(Total 3 marks) ow your working.

Teacher Assessment

Topic 25 - H Approximations

(Total 2 marks)

Section C Upper and Lower Bounds Grade C

1.	A baş	g of potatoes weigh	ns 9 kg to the nea	rest kilog	ram.		
	Write	e down the least po	ssible weight of t	the bag of	potatoes.		
				Answei	·	kg	
						(Total 1 mark)	
2.	•	clist records the dis day her recorded d			earest mile.		
	Write	e down the least an	d greatest possibl	le distance	e that she travelled.		
		Answer	Least		mile	S	
			Greatest		mile	es (Total 2 mar	ks)
3.	·	y runs a distance of					
	(a)	Write down the r	ninimum distance	e Garry co	ould have run.		
				Ansv	wer	km	(1)
	(b)	Write down the r	naximum distance	e Garry co	ould have run.		
				Ansv	wer	km (Total 2 mar	(1) rks)
4.		It takes 20 minute. This time is to the		ll of film.			
		What is the least	and greatest time	this could	d be?		
			Answer	Least		minutes	
				Greates	st	minutes	
						(Total 2 marks)	
5.	A spo	ort pitch has a leng	th of 75 metres, c	correct to	the nearest metre.		
	Write	e down the least an	d the greatest pos	ssible leng	gth of this pitch.		
			Ansv	ver	Least	metres	
					Greatest	metres	

6.		at an airport weigh luggage to the e greatest and least possible weig	e nearest kilogram. This of a case showing 25 kg on the scale?	
		Answer	Greatest	. kg
			Least	kg (Total 2 marks)
7.	Mount Eve		metre. What is its smallest possible height	t in
		Answei	r	. km (Total 2 marks)
Be ca	areful with t	he following questions, especial	ly with the upper bounds.	
8.	Ther	e are 14 700 (to the nearest hundr	red) spectators at a football match.	
	(i)	What is the least possible numb	er of spectators?	
			Answer	
	(ii)	What is the maximum number of	of spectators?	
			Answer	
				(1) (Total 2 marks)
9.	A college h	as 6300 students, correct to the no	earest hundred.	
	(i)	What is the least possible numb	er of students in this college?	
			Answer	(1)
	(ii)	What is the greatest possible nu	imber of students in this college?	
			Answer	
				(1) (Total 2 marks)

10.	Kirst	y buys a bag that costs £25 to the nearest pound	d.	, , , , , , , , , , , , , , , , , , ,
	(a)	Write the least amount that she could have pa	id.	
		Answer £		(1)
	(b)	Write the greatest amount that she could have	e paid.	
		Answer £		(1)
				(Total 2 marks)
11.		ie spends £8 on a picture. amount is given correct to the nearest pound.		
	Write	e down		
	(a)	the maximum price which Sophie could have	paid,	
		Answer £		
	(b)	the minimum price which Sophie could have	naid.	(1)
	(0)	•	puru.	
		THIS WELL &		(1) (Total 2 marks)
Be ca	areful	with this final question, think carefully abou	nt both lower and upper bounds.	(100012,
12.	This	is a true statement.	I am 18 years old.	
Write	e down	· ·	Cylie	
	(a)	the minimum age that Kylie could be,		
		Answer		
	(b)	the maximum age that Kylie could be.		(1)
		Answer		
				(1) (Total 2 marks)
Succ	ess:		Target:	

Teacher Assessment

Section D Problem Solving Using Bounds Grade B → A*

Mark's height is 203 cm and Eileen's height is 185 cm. Both heights are given to the nearest cm. Find the maximum possible difference between the two heights. Answer	•••••		
Both heights are given to the nearest cm. Find the maximum possible difference between the two heights. Answer	•••••	Answer	kg (Total 2 m a
Answer		· · · · · · · · · · · · · · · · · · ·	
Answer	Find	I the maximum possible difference between the two heights.	
Answer			
Answer			
(a) What are the minimum and maximum weights of the can? Answer Minimum weight			
Answer Minimum weight	A ca	an of drink weighs 342 g to the nearest gram.	
Answer Minimum weight	(a)		
(b) The cans are sold in packs of 12 What are the minimum and maximum weights of a pack of cans?			
What are the minimum and maximum weights of a pack of cans?		Maximum weight	g
	(b)		
		Maximum weight	~

4.	Nut	toffees weigh 9 grams each, correct to the nearest gram,	on Oximacions
	(a)	What is the minimum possible weight of 10 nut toffees?	
		Answergram	s (2)
	(b)	Treacle toffees weigh 8 grams each, correct to the nearest gram. 10 nut toffees and 10 treacle toffees are put into a bag. The manufacturer says, "This bag contains at least 162 grams of toffees."	
		Is this correct? Explain your answer carefully.	
			(2) Fotal 4 marks)
5.	Both	by runs 50 metres at a speed of 5 m/s. In values are measured to an accuracy of one significant figure. It is the least possible time taken?	
		Answer second	s Fotal 3 marks)

(Total 6 marks)

6.	(a)	The numbers in this calculation are given to 3 significant figures.	
		Find the least possible value of $\frac{12.3}{15.6 - 7.20}$	
		You must show all your working.	
		Answer	(3)
	(b)	The maximum safe load of a lift is 1500 kg, to the nearest 50 kg. The lift is loaded with boxes weighing 141 kg and 150 kg, both weights given to the nearest kilogram.	
		Can the lift safely carry 3 boxes weighing 141 kg each and 7 boxes weighing 150 kg each?	
		You must show all your working.	
			(3)
			(3)

7.	(a)	Find the greatest possible value of $\frac{12.3(18.5 + 9.41)}{15.8}$	
		All the numbers are given correct to three significant figures. Write down your full calculator display.	
		Answer	
			(3)
	(b)	A trailer can safely carry weights up to 5200 kg, correct to two significant figures. It is loaded with boxes weighing 115 kg, correct to the nearest kilogram.	
		Calculate the greatest number of boxes that the trailer can carry safely. You must show all your working.	
		Answer	
		(Total 6 mar	(3) :ks)

	millilitres. These values are accurate to 3 significant figures.	
]	Milk is supplied in small cartons which contain 21 millilitres, accurate to the nearest mi	llilitre.
]	Beryl likes milky coffee and always puts 2 cartons of milk in her coffee.	
7	Will Beryl's cup ever overflow?	
	You must show all your working.	MIX
•		 (Total 4 marks
]	A lift cable can safely carry a total load 1200 kg. The lift weighs 280 kg. Both numbers are given to two significant figures. The total load is made up of the weight of the lift and its contents. The lift carries boxes weighing 65 kg each, correct to the nearest kg.	
	How many boxes can safely be carried? You must show all your working.	
•		
	Answer	 (Total 4 marks)

8.

10. A floodlight tower is marked with the following sign.

WATTAGE NOT TO EXCEED 400 000 WATTS

The spotlights on the tower are rated at 2500 watts each. The manufacturer can only guarantee that the wattage of these spotlights is accurate to the nearest 100 watts.

(a)	What is the maximum number of spotlights that can safely be put on the tower?	
	Answer	
(b)	The formula $W = I^2 R$	(3)
	connects W (watts), I (amps) and R (ohms).	
	For one of the spotlights, the value of I is 25 amps measured to 2 significant figure I is I and I and I are I are I and I ar	es.
	What is the minimum possible value of R ?	
	Answer oh	ims (3)
		(Total 6 marks)
cess:	Target:	