| Name: | | | |-------|--|--| | | | | Teacher Assessment Topic 24 - H Inequalities ## Section A ## Solving Linear Inequalities Grade D / C | 1. | Solve the inequality $3x + 8 < 29$ | | |----|------------------------------------|---------------| | | | | | | | | | | | | | | Answer(T | otal 2 marks) | | | | | | 2. | Solve $3x + 7 < 1$ | | | | | | | | | | | | Answer | otal 2 marks) | | | | , | | 3. | Solve the inequality $7y < 3y + 6$ | | | | | | | | Answer(T | otal 2 marks) | | | | | | | | | | 4. | Solve the inequality $5x + 3 > 10$ | | | | | | | | | | | | | | | | Answer | | | | | otal 2 marks) | | 5. | Sol | lve the inequality $3x + 7 \ge 4$ | Inequalities | |---|-----|--|--------------------| | | | Answer(7 | Γotal 2 marks) | | 6. | (a) | Solve the inequality $3x + 7 \ge 13$ | | | | | Answer | | | | (b) | A mathematics teacher says | (2) | | N. C. | O E | I am thinking of an integer. I double the integer and add 1. The result is less than -7. | | | 1 | 天 | | | | | | What is the largest integer the teacher could have thought of? | | | | | | | | | | Answer | | | | | | (2) Fotal 4 marks) | 7. A stacking chair is 100 cm high and 40 cm wide. 100 cm ← 40 cm Not drawn accurately When a chair is added to a stack it increases the height by 10 cm and the width by 5 cm. Not drawn accurately | | Answer | | |-----|--|--| | | | | | (a) | Find an expression for the neight of a stack of <i>n</i> chairs. | | (b) A rule for the maximum number of chairs that can be stacked before they fall over is $$4n + 35 < 70$$ | what is the maximum number of chairs that can be stacked? | |---| | | | | | | | | Answer (Total 5 marks) **(3)** | 8. | (a) | Salva | tha | inequa | litz | 2r | . 3 | > | - | |------|-----|-------|-----|--------|------|----|-----|---|---| | ð. (| (a) | Solve | me | mequa | шц | 2x | + 3 | _ | | Answer(2) ## (b) Write down the inequality shown by the following diagram. Answer (c) Write down all the integers that satisfy both inequalities shown in parts (a) and (b). Answer (1) (Total 4 marks) **(1)** **9.** (a) Solve the inequality $3(x-2) \le 9$ Answer (3) (b) The inequality $x \le 3$ is shown on the number line below. Draw another inequality on the number line so that only the following integers satisfy both inequalities $$\{-2, -1, 0, 1, 2, 3\}$$ (1) 4 (Total 4 marks) | 10. | (a) | Solve the inequality $3x + 5 \le 16$ | | |-----|-----|---|---------------| Answer | (2) | | | | | , , | | | (b) | Write down the integer value satisfied by the inequality $5 < 2x < 7$ | | | | | | | | | | | | | | | Answer | (2) | | | | (Total 4 i | (2)
marks) | | | | | | | 11. | | n is an integer. List the values of n such that | | | | | $-6 \le 3n < 13$ | | | | | | | | | | | | | | | Answer(Total 2 x | manlra) | | | | (Total 3 i | marks) | (Total 3 marks) | 12. | (a) | x is an integer. | | |-----|-----|--|----------------------| | | | $0 < x \le 3$ | | | | | Write down all the possible values of x . | | | | | Angwar | | | | | Answer | (2) | | | (b) | x and y are integers. | | | | | $0 < x \le 3$ | | | | | y < x | | | | | x + y < 5 | | | | | Write down two pairs of values of x and y which satisfy all three inequalities. | Answer (, and (, and (|)
(Total 4 marks) | | | | | (Total 4 marks) | | 13. | (a) | x is an integer. | | | | | List all the values of x such that $-1 < 2x \le 8$ | | | | | | | | | | | | | | | Δ | | | | | Answer |
(Total 3 marks) | | | | | | | 14. | (a) | List the integer values of x such that $5 \le 3x < 18$ | Answer | | | 15. (a) | List all the solutions of the inequality | | |----------------|--|--------------| | | $4 < 2n \le 11$ | | | | where n is an integer. | | | | | | | | | | | | Answer | | | | | (3) | | | | | | (b) | | | | | 4x + 1 < 7 | | | | | | | | | | | | Answer | (2) | | | | | | (c) | Show that, for any value of n , | | | | $(n+1)^2 > n(n+2)$ | | | | | | | | | | | | (Total 7 m | (2)
arks) | | | | | | | | | | | | | | | | | | C | Townst. | | | Success: | s: Target: | | | | | | | | | | | | | | | | | | **(2)** Section B Shading Regions Grade B | 1. | (a) | Solve the inequality | $3x - 5 \le 5 - 2x$ | |----|-----|----------------------|---------------------| Answer (b) The region R is shown shaded below. Write down **three** inequalities which together describe the shaded region. Answer (3) (Total 5 marks) 2. The region R is shown shaded below. | Write down three inequalities which together describe the shaded region. | |--| | | | | | | | | | | | Answer | | | | (Total 3 marks) | 3. On the grid below, indicate clearly the region defined by the three inequalities $$x \ge 1$$ $$y \ge x - 1$$ $$x + y \le 7$$ Mark the region with an R. (Total 3 marks) 4. On the grid below, indicate clearly the region defined by the three inequalities $y \leq 4$ $x \ge -3$ $y \ge x + 2$ Mark the region with an *R*. (Total 3 marks) 5. Match each of the **shaded** regions to one of these inequalities. **A** $$y \le -\frac{1}{2}x + 2$$ **D** $y \ge 2x - 4$ $$\mathbf{D} \qquad y \ge 2x - 4$$ **B** $$y \le \frac{1}{2}x + 2$$ **E** $y \le 2x - 4$ $$\mathbf{E} \qquad y \le 2x - 4$$ $$\mathbf{C} \qquad y \ge -2x + 4$$ Region 1 Region 2 Region 3 Region 4 (Total 4 marks) Success: Target: