9 Arithmetic: Fractions and Percentages

9.1 Revision of Operations with Fractions

In this section we revise the basic use of fractions.

Addition

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

Note that, for *addition* of fractions, in this way both fractions must have the *same denominator*.

Multiplication

$$\frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d}$$

Division

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$
$$= \frac{a \times d}{b \times c}$$

Example 1

Calculate:

(a)
$$\frac{3}{5} + \frac{4}{5}$$

(b)
$$\frac{3}{7} + \frac{1}{3}$$

(a)
$$\frac{3}{5} + \frac{4}{5} = \frac{3+4}{5}$$

= $\frac{7}{5}$

$$= 1\frac{2}{5}$$

(b)
$$\frac{3}{7} + \frac{1}{3} = \frac{9}{21} + \frac{7}{21}$$
 (common denominator = 21)
$$= \frac{16}{21}$$

Example 2 Calculate:

(a)
$$\frac{3}{4}$$
 of 48

(b)
$$\frac{3}{5}$$
 of 32

Solution

(a)
$$\frac{3}{4}$$
 of $48 = \frac{3}{4} \times 48$
= $\frac{3 \times 48}{4}$
= 36

(b)
$$\frac{3}{5}$$
 of 32 = $\frac{3}{5} \times 32$
= $\frac{3 \times 32}{5}$
= $\frac{96}{5}$
= $19\frac{1}{5}$

Example 3 Calculate:

(a)
$$\frac{3}{4} \times \frac{3}{7}$$

(b)
$$1\frac{1}{2} \times \frac{2}{5}$$

(a)
$$\frac{3}{4} \times \frac{3}{7} = \frac{3 \times 3}{4 \times 7}$$
$$= \frac{9}{28}$$

(b)
$$1\frac{1}{2} \times \frac{2}{5} = \frac{3}{2} \times \frac{2}{5}$$

= $\frac{6}{10}$
= $\frac{3}{5}$

or
$$1\frac{1}{2} \times \frac{2}{5} = \frac{3}{12} \times \frac{2}{5}$$
$$= \frac{3}{5}$$

Calculate:

(a)
$$\frac{3}{7} \div \frac{3}{4}$$

(b)
$$1\frac{3}{4} \div \frac{4}{5}$$

Solution

(a)
$$\frac{3}{7} \div \frac{3}{4} = \frac{3}{7} \times \frac{4}{3}$$
$$= \frac{12}{21}$$
$$= \frac{4}{7}$$

or
$$\frac{3}{7} \div \frac{3}{4} = \frac{1}{7} \times \frac{4}{3}$$
$$= \frac{4}{7}$$

(b)
$$1\frac{3}{4} \div \frac{4}{5} = \frac{7}{4} \div \frac{4}{5}$$

= $\frac{7}{4} \times \frac{5}{4}$
= $\frac{35}{16}$
= $2\frac{3}{16}$

Exercises

1. Calculate:

(a)
$$\frac{1}{7} + \frac{4}{7}$$

(b)
$$\frac{3}{8} + \frac{7}{8}$$

(c)
$$\frac{1}{9} + \frac{7}{9}$$

(d)
$$\frac{3}{10} + \frac{1}{10}$$

(e)
$$\frac{7}{13} + \frac{9}{13}$$

(f)
$$\frac{6}{7} + \frac{5}{7}$$

(g)
$$\frac{5}{7} - \frac{3}{7}$$

(h)
$$\frac{7}{9} - \frac{4}{9}$$

(i)
$$\frac{11}{13} - \frac{6}{13}$$

2. Calculate:

(a)
$$\frac{1}{2} + \frac{1}{3}$$

(b)
$$\frac{1}{5} + \frac{1}{7}$$

(c)
$$\frac{1}{4} + \frac{1}{5}$$

(d)
$$\frac{2}{3} + \frac{1}{2}$$

(e)
$$\frac{7}{8} + \frac{3}{10}$$

(f)
$$\frac{3}{4} + \frac{4}{5}$$

(g)
$$\frac{3}{7} + \frac{2}{3}$$

(h)
$$\frac{4}{9} + \frac{2}{3}$$

(i)
$$\frac{1}{4} + \frac{5}{8}$$

3. Calculate:

(a)
$$1\frac{1}{2} + 2\frac{1}{2}$$

(b)
$$3\frac{3}{4} + 4\frac{1}{4}$$

(c)
$$2\frac{3}{5} + 3\frac{1}{5}$$

(d)
$$3\frac{1}{3} + 1\frac{1}{2}$$

(e)
$$3\frac{4}{5} + 2\frac{3}{5}$$

(f)
$$5\frac{4}{7} + 3\frac{4}{7}$$

(g)
$$4\frac{3}{4} + 2\frac{5}{8}$$

(h)
$$4\frac{2}{7} + 3\frac{1}{3}$$

(i)
$$2\frac{5}{9} + 3\frac{2}{3}$$

4. Calculate:

(a)
$$2\frac{1}{2} - 1\frac{1}{2}$$

(b)
$$4\frac{3}{4} - 3\frac{1}{4}$$

(c)
$$2\frac{3}{8} - 2\frac{1}{4}$$

(d)
$$4\frac{5}{7} - 3\frac{6}{7}$$

(e)
$$3\frac{5}{8} - 1\frac{7}{8}$$

(f)
$$4\frac{1}{3} - 3\frac{1}{2}$$

(g)
$$2\frac{2}{3} - 1\frac{1}{9}$$

(h)
$$5\frac{3}{7} - 2\frac{1}{2}$$

(i)
$$4\frac{1}{4} - 2\frac{2}{3}$$

5. Calculate:

(a)
$$\frac{1}{4}$$
 of £20

(b)
$$\frac{1}{5}$$
 of 30 kg

(c)
$$\frac{3}{4}$$
 of £32

(d)
$$\frac{4}{5}$$
 of 90 kg

(e)
$$\frac{5}{7}$$
 of 49 kg

(f)
$$\frac{3}{8}$$
 of 20 m

(g)
$$\frac{3}{5}$$
 of £36

(h)
$$\frac{7}{10}$$
 of 42 m

6. Calculate:

(a)
$$\frac{1}{2} \times \frac{1}{4}$$

(b)
$$\frac{3}{8} \times \frac{1}{5}$$

(c)
$$\frac{2}{3} \times \frac{3}{5}$$

(d)
$$\frac{6}{7} \times \frac{2}{3}$$

(e)
$$\frac{4}{5} \times \frac{3}{4}$$

(f)
$$\frac{4}{7} \times \frac{3}{5}$$

$$(g) \quad \frac{1}{2} \times \frac{3}{4}$$

(h)
$$\frac{4}{9} \times \frac{3}{7}$$

(i)
$$\frac{1}{8} \times \frac{4}{5}$$

7. Calculate:

(a)
$$\frac{1}{2} \div \frac{1}{3}$$

(b)
$$\frac{3}{4} \div \frac{8}{9}$$

(c)
$$\frac{3}{5} \div \frac{4}{5}$$

$$(d) \quad \frac{7}{10} \div \frac{1}{2}$$

(e)
$$\frac{3}{4} \div \frac{3}{5}$$

$$(f) \quad \frac{5}{9} \div \frac{7}{8}$$

(g)
$$\frac{6}{7} \div \frac{2}{3}$$

$$\text{(h)} \quad \frac{4}{7} \div \frac{3}{4}$$

$$(i) \qquad \frac{5}{6} \div \frac{2}{3}$$

Calculate:

(a)
$$1\frac{1}{2} \times \frac{3}{4}$$

(b)
$$3\frac{1}{2} \times \frac{2}{7}$$

(c)
$$1\frac{1}{4} \times \frac{2}{3}$$

(d)
$$1\frac{1}{2} \times \frac{1}{4}$$

(e)
$$2\frac{1}{2} \times \frac{3}{4}$$

(f)
$$1\frac{2}{3} \times \frac{4}{5}$$

Calculate:

(a)
$$1\frac{1}{2} \div \frac{3}{4}$$

(b)
$$3\frac{1}{2} \div \frac{1}{2}$$

(c)
$$2\frac{1}{4} \div \frac{2}{3}$$

(d)
$$3\frac{1}{2} \div \frac{1}{4}$$

(e)
$$4\frac{1}{2} \div \frac{4}{5}$$

(f)
$$3\frac{1}{4} \div \frac{2}{3}$$

Calculate: 10.

(a)
$$1\frac{1}{2} \times \frac{3}{4}$$

(b)
$$3\frac{1}{2} \times 1\frac{4}{7}$$

(c)
$$\left(1\frac{1}{3}\right)^2$$

Calculate: 11.

(a)
$$3\frac{3}{4} \div 1\frac{1}{2}$$
 (b) $3\frac{1}{2} \div 1\frac{1}{4}$ (c) $3\frac{1}{3} \div 1\frac{3}{7}$

(b)
$$3\frac{1}{2} \div 1\frac{1}{4}$$

(c)
$$3\frac{1}{3} \div 1\frac{3}{7}$$

12. Calculate:

(a)
$$\frac{4}{7} + 1\frac{3}{4}$$

(b)
$$2\frac{1}{2} \times \frac{3}{7}$$

(a)
$$\frac{4}{7} + 1\frac{3}{4}$$
 (b) $2\frac{1}{2} \times \frac{3}{7}$ (c) $5\frac{1}{4} - 3\frac{1}{6}$

(d)
$$6\frac{1}{2} \div 1\frac{6}{7}$$

(d)
$$6\frac{1}{2} \div 1\frac{6}{7}$$
 (e) $1\frac{1}{2} \times 2\frac{2}{3}$

(f)
$$2\frac{2}{3} - 1\frac{5}{8}$$

9.2 Fractions in Context

In this section we consider the use of fractions in various contexts, and how to use the fraction key on a calculator.

Example 1

There are 600 pupils in a school. How many school lunches must be prepared if:

- (a) $\frac{3}{4}$ of the pupils have school lunches,
- (b) $\frac{2}{3}$ of the pupils have school lunches?

Solution

(a)
$$\frac{3}{4}$$
 of $600 = \frac{3}{4} \times 600$ o
$$= \frac{1800}{4}$$

$$= 450 \text{ lunches}$$

or
$$\frac{3}{4}$$
 of $600 = \frac{3}{1} \times 600$
= 450 lunches

(b)
$$\frac{2}{3}$$
 of $600 = \frac{2}{3} \times 600$ or $= \frac{1200}{3}$ $= 400$ lunches

or
$$\frac{2}{3}$$
 of $600 = \frac{2}{1} \times \cancel{600}$
= 400 lunches

Example 2

The diagram opposite shows a rectangle.

- (a) Calculate its perimeter.
- (b) Calculate its area.

Perimeter =
$$2\frac{1}{4} + 1\frac{1}{3} + 2\frac{1}{4} + 1\frac{1}{3}$$

= $2\frac{3}{12} + 1\frac{4}{12} + 2\frac{3}{12} + 1\frac{4}{12}$
= $6\frac{14}{12}$
= $7\frac{1}{6}$ m

Area =
$$2\frac{1}{4} \times 1\frac{1}{3}$$
 or Area = $2\frac{1}{4} \times 1\frac{1}{3}$
= $\frac{9}{4} \times \frac{4}{3}$ = $\frac{36}{12}$ = 3 m^2

A loaf of bread requires $\frac{3}{4}$ kg of flour. How many loaves can be made from $6\frac{1}{2}$ kg of flour?

Solution

$$6\frac{1}{2} \div \frac{3}{4} = \frac{13}{2} \div \frac{3}{4}$$

$$= \frac{13}{2} \times \frac{4}{3}$$

$$= \frac{52}{6}$$

$$= 8\frac{4}{6}$$

$$= 8\frac{2}{3}$$

8 loaves can be made.

Many calculators have a key marked (a^{b_c}) , which can be used to enter fractions.

Pressing 2 $(a^{b}c)$ 3 produces the display $(2 \rfloor 3)$ which represents the fraction $\frac{2}{3}$.

Pressing 4 $(a \ b \ 7)$ 7 $(a \ b \ 7)$ 9 produces the display $(4 \ \bot 7 \ \bot 9)$, which represents $4\frac{7}{9}$.

Note that you must write the fractions in their correct form, and not just copy the display.

(Some calculator displays may be different from this example – check the instruction booklet for *your* calculator.)

Exercises

- Use your calculator to find answers for the following, making sure that they are written in the correct way:
 - (a) $\frac{1}{4} + \frac{3}{7}$ (b) $\frac{5}{7} \frac{1}{3}$ (c) $\frac{3}{4} \div \frac{1}{9}$ (d) $\frac{1}{2} \div \frac{1}{6}$ (e) $\frac{3}{4} \times \frac{7}{8}$ (f) $\frac{4}{5} \times \frac{3}{8}$

(g)
$$1\frac{1}{2} \times 7$$

(h)
$$2\frac{1}{2} \times \frac{3}{4}$$

(g)
$$1\frac{1}{2} \times 7$$
 (h) $2\frac{1}{2} \times \frac{3}{4}$ (i) $1\frac{5}{7} + 4\frac{2}{3}$

(j)
$$1\frac{1}{2} \div 1\frac{2}{3}$$

(k)
$$6\frac{1}{4} \div \frac{3}{4}$$

(j)
$$1\frac{1}{2} \div 1\frac{2}{3}$$
 (k) $6\frac{1}{4} \div \frac{3}{4}$ (l) $5\frac{1}{2} - 3\frac{2}{5}$

- (a) Enter the fraction $\frac{6}{8}$ and then press the = key on your calculator. 2. Describe what happens.
 - Enter the fraction $\frac{8}{6}$ and then press the = key on your calculator. Describe what happens.
 - What happens to each of the fractions listed below if you enter it into (c) your calculator and then press the (=) key:

$$\frac{3}{7}$$
, $\frac{9}{2}$, $\frac{4}{6}$, $\frac{6}{4}$, $\frac{10}{3}$, $\frac{3}{10}$

3. Calculate the area and perimeter for each of the rectangles below:

- A school has 800 pupils. The Headteacher decides to send a questionnaire 4. to $\frac{2}{5}$ of the pupils. How many pupils receive a questionnaire?
- A firm that makes floppy discs knows that $\frac{1}{20}$ of the discs they produce have faults. How many faulty floppy discs would you have if you bought:
 - (a) 100 discs,
- 80 discs, (b)
- 2000 discs ? (c)
- A cake recipe requires $\frac{3}{8}$ kg of flour. How many cakes could be made with:
 - (a) 3 kg flour,

- (d) 1 kg flour,
- (b) 6 kg flour, (c) $\frac{2}{3}$ kg flour, (e) $1\frac{1}{2}$ kg flour, (f) $1\frac{1}{3}$ kg flour.
- 7. The rectangle opposite has an area of $2\frac{3}{5}$ cm². What is the length, x, of the rectangle?

- 8. Sheets of paper are $\frac{1}{80}$ cm thick. Calculate the height of a pile of paper that contains:
 - (a) 40 sheets,

(b) 120 sheets,

(c) 70 sheets,

(d) 140 sheets.

How many sheets would there be in a pile of paper $4\frac{1}{2}$ cm high?

9. A bottle contains $1\frac{2}{5}$ litres of orange squash. To make one drink, $\frac{1}{200}$ of a litre of squash is needed.

How many drinks can be made from the bottle of squash?

10. Calculate the volume of the following cuboid:

9.3 Conversion of Fractions and Percentages

To convert a fraction to a percentage, multiply by 100.

To convert a percentage to a fraction, divide by 100 or multiply by $\frac{1}{100}$.

Example 1

Convert the following fractions to percentages:

(a) $\frac{17}{100}$

- (b) $\frac{9}{10}$
- (c) $\frac{3}{5}$

(d) $\frac{3}{4}$

(e) $\frac{1}{3}$

(f) $\frac{1}{8}$

Solution

(a)
$$\frac{17}{100} \times 100 = \frac{1700}{100}$$

or
$$\frac{17}{1400} \times 100 = 17\%$$

(b)
$$\frac{9}{10} \times 100 = \frac{900}{10}$$

or
$$\frac{9}{1-10} \times 100 = 90\%$$

(c)
$$\frac{3}{5} \times 100 = \frac{300}{5}$$

or
$$\frac{3}{1.5} \times 100^{20} = 60\%$$

$$= 60\%$$

(a)
$$\frac{100}{100} \times 100 = \frac{100}{100}$$
 or $\frac{9}{1400} \times 400 = 17\%$
(b) $\frac{9}{10} \times 100 = \frac{900}{10}$ or $\frac{9}{140} \times 400 = 90\%$
 $= 90\%$
(c) $\frac{3}{5} \times 100 = \frac{300}{5}$ or $\frac{3}{15} \times 100 = 60\%$
 $= 60\%$
(d) $\frac{3}{4} \times 100 = \frac{300}{4}$ or $\frac{3}{14} \times 100 = 75\%$
 $= 75\%$

(e)
$$\frac{1}{3} \times 100 = \frac{100}{3}$$

= $33\frac{1}{3}\%$

(f)
$$\frac{1}{8} \times 100 = \frac{100}{8}$$

= $12\frac{4}{8}$
= $12\frac{1}{2}\%$

Example 2

Convert these percentages to fractions:

(a) 30% (b) 80% (c) 45%

(d) 6%

(e) $16\frac{1}{2}\%$

(f) $62\frac{1}{2}\%$

(a)
$$30\% = \frac{30}{100}$$
$$= \frac{3}{10}$$

(b)
$$80\% = \frac{80}{100}$$
$$= \frac{8}{10}$$

(c)
$$45\% = \frac{45}{100}$$

= $\frac{9}{20}$

(d)
$$6\% = \frac{6}{100}$$
$$= \frac{3}{50}$$

(e)
$$16\frac{1}{2}\% = 16\frac{1}{2} \times \frac{1}{100}$$

= $\frac{33}{2} \times \frac{1}{100}$
= $\frac{33}{200}$

(f)
$$62\frac{1}{2}\% = 62\frac{1}{2} \times \frac{1}{100}$$

$$= \frac{125}{2} \times \frac{1}{100}$$

$$= \frac{125}{200}$$

$$= \frac{5}{8}$$

A football team is based on a squad of 20 players. In one season 8 players are shown a red or yellow card.

- (a) What percentage of the squad is shown a red or yellow card?
- (b) What percentage of the squad is *not* shown a red or yellow card?

(a)
$$\frac{8}{20} \times 100 = \frac{800}{20}$$
 or $\frac{8}{1 \cdot 20} \times 100 = 40\%$

(b)
$$100 - 40 = 60\%$$

Exercises

1. Convert the following percentages to fractions:

(a) 50%

(b) 75%

(c) 40%

(d) 25%

(e) 20%

(f) 10%

(g) 8%

(h) 58%

(i) 36%

(j) 64%

(k) 76%

(1) 12%

2. Convert the following fractions to percentages:

(a) $\frac{7}{10}$

(b) $\frac{1}{2}$

(c)

(d) $\frac{3}{4}$

(e) $\frac{7}{20}$

(f) $\frac{6}{25}$

(g) $\frac{19}{20}$

(h) $\frac{17}{25}$

(i) $\frac{3}{5}$

 $(j) \qquad \frac{1}{5}$

(k) $\frac{11}{20}$

(1) $\frac{7}{50}$

3. Convert the following percentages to fractions:

(a) $12\frac{1}{2}\%$

(b) $66\frac{2}{3}\%$

(c) $33\frac{1}{3}\%$

(d) $14\frac{1}{2}\%$

(e) $18\frac{1}{2}\%$

(f) $4\frac{1}{4}\%$

4. Convert these fractions to percentages:

(a) $\frac{1}{8}$

(b) $\frac{1}{6}$

(c) $\frac{3}{8}$

(d) $\frac{47}{200}$

(e) $\frac{61}{200}$

(f) $\frac{2}{3}$

- 5. In a class of 25 pupils there are 8 individuals who play in the school hockey team. What percentage of the class play in the hockey team?
- 6. Halim scores 32 out of 80 in a test. Express his score as a percentage.

- 7. An athlete has completed 250 m of a 400 m race. What percentage of the distance has the athlete run?
- 8. A double decker bus has 72 seats; there are 18 empty seats on the bus.
 - (a) What percentage of the seats are empty?
 - (b) What percentage of the seats are being used?
- 9. Andy buys a bag of 12 apples at a supermarket; there are 4 bruised apples in the bag.
 - (a) What percentage of the apples are bruised?
 - (b) What percentage of the apples are *not* bruised?
- 10. Jason took 4 tests at school and his results are given below:

Science	60 out of	80
Maths	75 out of	100
English	38 out of	50
French	28 out of	40

- (a) Express his score for each test as a percentage.
- (b) Write down his average percentage score for the 4 tests.

9.4 Finding Percentages

In this section we revise finding percentages of quantities.

Example 1

Calculate 20% of £120.

20% of £120 =
$$\frac{20}{100} \times 120$$

= $\frac{2}{10} \times 120$
= £24

Calculate 75% of 48 kg.

Solution

75% of
$$48 \text{ kg} = \frac{75}{100} \times 48$$

= $\frac{3}{4} \times 48$
= 36 kg

Value Added Tax (VAT) is added to the price of many products; in the UK it is currently $17\frac{1}{2}\%$. An interesting way to calculate $17\frac{1}{2}\%$ is to use the fact that $17\frac{1}{2}=10+5+2\frac{1}{2}$; this is illustrated in the next example.

Example 3

A bike costs £180 before VAT is added. How much VAT must be added to the cost of the bike, if VAT is charged at $17\frac{1}{2}\%$?

10% of £180 = £18
5% of £180 = £9

$$2\frac{1}{2}$$
% of £180 = £4.50
 $17\frac{1}{2}$ % of £180 = £18 + £9 + £4.50
= £31.50

Exercises

1. Calculate:

(a) 50% of £22

(b) 10% of 70 m

(c) 25% of £60

(d) 30% of 80 m

(e) 60% of £40

(f) 90% of 50 kg

(g) 75% of £30

(h) 25% of 6 kg

(i) 30% of 32 kg

(i) 16% of £40

(k) 70% of 8 m

(1) 35% of £20

2. Use the method of Example 3 to calculate the VAT that must be added to the following prices at a rate of $17\frac{1}{2}\%$:

(a) £200

(b) £300

(c) £40

(d) £30

(e) £28

(f) £38

- 3. (a) Calculate $17\frac{1}{2}\%$ of £25
 - (b) Describe the most sensible way to give your answer.
- 4. Calculate $17\frac{1}{2}\%$ of the following amounts, giving your answers to a sensible degree of accuracy:

(a) £15

(b) £75

(c) £7

- 5. Use a method similar to Example 3 to calculate 15% of £120.
- 6. A computer costs £900, but $17\frac{1}{2}\%$ VAT must be added to this price.
 - (a) Calculate $17\frac{1}{2}\%$ of £900.
 - (b) Calculate the total cost of the computer.
- 7. A company employs 240 staff. The number of staff is to be increased by 20%. How many *new* staff will the company employ?
- 8. A bike costs £186. The price is to be reduced by $33\frac{1}{3}\%$ in a sale.
 - (a) Calculate how much you would save by buying the bike in the sale.
 - (b) How much would you pay for the bike in the sale?
- 9. In a school there are 280 pupils in Year 7. 85% of these pupils go on a trip to Alton Towers. How many pupils go on the trip?
- 10. Alec scores 75% on a test with a maximum of 56 marks. How many marks does Alec score in the test?

9.5 Increasing and Decreasing Quantities by a Percentage

When increasing or decreasing by a percentage there are two possible approaches: one is to find the actual increase or decrease and to add it to, or subtract it from, the original amount. The second approach is to use a simple multiplication. For example, to increase by 20%, multiply by 1.2. We can illustrate this by considering a price, say $\pounds p$, that increases by 20%.

The increase is
$$\pounds p \times \frac{20}{100} = \pounds 0.2 p$$

so the new price is

$$\pounds p + \pounds 0.2 p = \pounds (1 + 0.2) p$$
$$= £1.2p$$

and we can see that a 20% increase is equivalent to multiplying by 1.2 to get the new price.

Note that

$$100\% + 20\% = 120\% \Rightarrow \frac{120}{100} = 1.2$$

Similarly, a decrease of 20% is equivalent to

$$100\% - 20\% = 80\% \implies \frac{80}{100} = 0.8$$

i.e. a multiplication by 0.8.

Example 1

The price of a jar of coffee is £2.00. Calculate the new price after an increase of 10%.

10% of £2.00 =
$$\frac{10}{100} \times 2$$
 or $100\% + 10\% = 110\%$,
= £0.2 so multiply by 1.1

New price =
$$2 + 0.2$$
 New price = $1.1 \times £2$
= $£2.20$ = $£2.20$

In a sale, the price of a TV is reduced by 40%. What is the sale price if the original price was £170.

Solution

$$40\%$$
 of £170 = $\frac{40}{100} \times 170$ or $100\% - 40\% = 60\%$, so multiply by 0.6

Sale price =
$$170 - 68$$
 Sale price = 0.6×170
= £102 = £102

Example 3

Jared earns £24 each week by working in a shop. His wages are to be increased by 5%. How much will he then earn each week?

Solution

5% of £24 =
$$\frac{5}{100} \times 24$$
 or $100\% + 5\% = 105\%$,
= £1.20 so multiply by 1.05

New wages =
$$24 + 1.20$$
 New wages = 1.05×24
= £25.20 = £25.20

Exercises

- 1. Add 10% to:
 - (a) £40
- (b) £136
- (c) £262
- 2. Reduce the following prices by 20%:
 - (a) £50
- (b) £92
- (c) £340

- 3. (a) Increase 40 m by 30%
- (b) Increase £60 by 5%
- (c) Increase £66 by 20%
- (d) Increase 80 kg by 40%
- (e) Increase £1000 by 30%
- (f) Decrease £60 by 25%
- (g) Reduce 70 kg by 5%
- (h) Reduce £90 by 15%
- (i) Increase 40 m by 7%
- (j) Increase £18 by 4%

MEP Y8 Practice Book A

4. A computer costs £600. In a sale there is a 20% discount on the price of the item. Calculate the sale price of the computer.

5. A shopkeeper increases all the prices in his shop by 4%. What is the new price of each of the items below? Give your answers to the nearest penny.

Box of chocolates £3
Bag of flour 75p
Packet of sweets 50p
Tin of beans 20p
Can of drink 45p

6. A CD player costs £90. In a sale the price is reduced by 25%. Calculate the sale price.

7. A certain type of calculator costs £8. A teacher buys 30 of these calculators for her school and is given a 20% discount. How much does she pay in total?

8. Add $17\frac{1}{2}$ % VAT to the following prices, giving your answers to the nearest pence:

- (a) £400
- (b) £22
- (c) £65

9. The population of a town is 120 000. What is the total population of the town after a 5% increase?

10. Hannah invests £800 in a building society. Every year 5% interest is added to her money.

- (a) Explain why, after 2 years she has £882 in her account.
- (b) How much money does she have after 5 years? (Give your answer to the nearest pence.)

11. Andrew has £100 to invest in a building society. At the end of each year, 10% interest is added to his investment.

- (a) What is the multiplier that can be used each year to calculate the new amount in the account?
- (b) Show that the multiplier for 2 years is 1.21.
- (c) What is the multiplier for *n* years?
- (d) How many years does it take to *double* the £100 investment?

9.6 Finding the Percentage Increase and Decrease

When a quantity increases, we can find the percentage increase using this formula:

Percentage
$$increase = \frac{increase}{original\ amount} \times 100$$

Similarly,

Percentage
$$decrease = \frac{decrease}{original amount} \times 100$$

Example 1

The price of a drink increases from 40p to 45p. What is the percentage increase?

Solution

Increase =
$$45p - 40p$$

= $5p$

Percentage increase =
$$\frac{5}{40} \times 100$$

= $\frac{25}{2}$
= 12.5%

Example 2

The number of pupils in a school increases from 820 to 861. Calculate the percentage increase.

Increase =
$$861 - 820$$

= 41 pupils

Percentage increase =
$$\frac{41}{820} \times 100$$

= 5%

Although the lion is thought of as an African animal, there is a small population in India and elsewhere in Asia. The number of lions in India decreased from 6000 to 3900 over a 10-year period. Calculate the percentage decrease in this period.

Solution

Percentage decrease =
$$\frac{2100}{6000} \times 100$$

= 35%

Example 4

The price of cheese, per kg, is increased from £3.26 to £3.84. What is the percentage increase?

Solution

Increase =
$$£3.84 - £3.26$$

= £0.58

Percentage increase =
$$\frac{0.58}{3.26} \times 100$$

= 17.8% to 1 decimal place

Note: You might find it easier to work through the example in pence, but note that *all* quantities must be expressed in pence.

Increase =
$$(384 - 326)p$$

= $58p$

Percentage increase =
$$\frac{58}{326} \times 100$$

= 17.8% to 1 decimal place

Example 5

In a sale, the price of a bike is reduced from £180 to £138. Calculate the percentage reduction in price, correct to 1 decimal place.

Solution

Reduction =
$$180 - 138$$

= £42

Percentage reduction =
$$\frac{42}{180} \times 100$$

= 23.3% to 1 decimal place.

Exercises

- 1. The price of a school lunch increases from £1.40 to £1.54. Calculate the percentage increase in the price.
- 2. A television priced at £500 is reduced in price to £400 in a sale. Calculate the percentage reduction in the price of the television.
- 3. The price of a car increases from £8000 to £8240. What is the percentage increase in the price of the car?
- 4. A shopkeeper buys notepads for 60p each and sells them for 80p each. What percentage of the selling price is profit?
- 5. The value of an antique clock increases from £300 to £345. Calculate the percentage increase in the value of the clock.
- 6. The number of books in a school library is increased from 2220 to 2354. What is the percentage increase in the number of books?
- 7. The height of a tomato plant increases from 80 cm to 95 cm. Calculate the percentage increase in the height, correct to 1 decimal place.
- 8. The price of a bus fare is reduced from 55p to 40p. Calculate the percentage reduction in the price of the bus fare, correct to 1 decimal place.
- 9. The mass of a person on a diet decreases from 75 kg to 74 kg. Calculate the percentage reduction in their mass, correct to 3 significant figures.

- 10. Jasmine invests £250 in a building society. After the first year her account contains £262.50. After the second year it contains £280.88. Calculate the percentage increase of the amount in her account:
 - (a) during the first year,
 - (b) during the second year,
 - (c) over the two years.

Give your answers correct to 2 decimal places.

9.7 Reverse Percentage Calculations

The process of adding a percentage to a quantity can be reversed.

For example, if the cost of a portable TV is £141 including $17\frac{1}{2}\%$ VAT, the cost *before* adding the VAT can be found. The multiplier in this example is 1.175, as the price is made up of 100% + 17.5% = 117.5%, which is equivalent to multiplying by

$$\frac{117.5}{100} = 1.175$$

Original price
$$\times 1.175$$
 £141 $\div 1.175$ £141

Example 1

Jane's salary was increased by 10% to £9350. What was her original salary?

Solution

$$100\% + 10\% = 110\%,$$

which = $\frac{110}{100} = 1.1$

Therefore Jane's original salary would have been multiplied by 1.1 to give £9350. So to calculate her original salary, divide by 1.1.

Original salary
$$\times 1.1$$
 £9350 $\div 1.1$ £9350

In a sale, the price of a video recorder is reduced by 22% to £218.40. How much money would you save by buying the video recorder in the sale?

Solution

$$100\% - 22\% = 78\%$$

$$= \frac{78}{100}$$

$$= 0.78$$

The original price would have been multiplied by 0.78 to get the sale price. So divide by 0.78 to find the original price.

Original price
$$\times 0.78$$
 £218.40 $\div 0.78$ £218.40

Saving = Original price - Sale price
=
$$£280 - £218.40$$

= $£61.60$

Example 3

The cost of an order, including VAT at $17\frac{1}{2}\%$, is £274.95.

Calculate the cost of the order without VAT.

Solution

Original cost
$$\times 1.175$$
 £274.95

Cost of the order without VAT is £234.00.

Exercises

1. In a sale the prices of all the clothes in a shop are reduced by 20%. Calculate the original prices of the items below:

Item	Sale Price
Jeans	£36
Coat	£56
Shirt	£14

- 2. The price of a car is increased by 4% to £12 480. What was the original price?
- 3. The amount that Jason earns for his paper round is increased by 2% to £21.93 per week. How much *extra* money does Jason now get each week?
- 4. A special value packet of breakfast cereal contains 25% more than the standard packet. The special value packet contains 562.5 grams of cereal. How much does the *standard* packet contain?
- 5. The bill for repairing a computer is £29.38 which includes VAT at $17\frac{1}{2}\%$. What was the bill before the VAT was added?
- 6. The height of a plant increases by 18%, to 26 cm. Calculate the original height of the plant, correct to the nearest cm.
- 7. A 3.5% pay rise increases Mr Smith's annual salary to £21 735. What was his original salary?
- 8. The price of a bike in a sale is £145. If the original price has been reduced by $12\frac{1}{2}\%$, what was the original price? (Give your answer to the nearest pence.)
- 9. Alice carries out an experiment to record how quickly plants grow. One plant increases in height from 12.0 cm to 13.8 cm in one week. A second plant increases by the same percentage to 16.1 cm. What was the original height of the second plant?
- 10. James buys a computer. The seller reduces the price by 30% and adds VAT at 17.5%. If James pays £1551 for the computer, what was its original price? (Give your answer to the nearest pence.)