Algebra: Brackets 8

8.1 **Expansion of Single Brackets**

In this section we consider how to expand (multiply out) brackets to give two or more terms, as shown below:

3(x+6) = 3x + 18

First we revise negative numbers and order of operations.

Example 1

Evaluate:

(b) -7 + (-4)(a) -6 + 10

(c)	$(-6) \times (-5)$	(d)	$6 \times (4 - 7)$
(e)	4 (8 + 3)	(f)	6 (8 – 15)
(g)	3 - (-5)	(h)	(-2) - (-3)

(g)
$$3 - (-5)$$
 (h) $\frac{(-2) - (-5)}{-1}$

Solution

(a)
$$-6 + 10 = 4$$

(b)
$$-7 + (-4) = -7 - 4$$

= -11

(c)
$$(-6) \times (-5) = 30$$

(d)
$$6 \times (4 - 7) = 6 \times (-3)$$

= -18

(e)
$$4(8+3) = 4 \times 11$$

= 44

(f)
$$6(8-15) = 6 \times (-7)$$

= -42

(g)
$$3 - (-5) = 3 + 5$$

= 8
(h) $\frac{(-2) - (-3)}{-1} = \frac{(-2) + 3}{-1}$
 $= \frac{1}{-1}$
= -1

When a bracket is expanded, *every term* inside the bracket must be multiplied by the number outside the bracket. Remember to think about whether each number is positive or negative!

Example 2

Expand 3(x+6) using a table.

Ę.

Solution

×	x	6
3	3 <i>x</i>	18

From the table,

3(x+6) = 3x+18

l'aj

Example 3

Expand 4(x-7).

Solution

 $4(x-7) = 4 \times x - 4 \times 7$

=4x - 28

Remember that every term inside the bracket must be multiplied by the number outside the bracket.

1 in

Example 4

Expand x(8-x).

Solution

 $x (8-x) = x \times 8 - x \times x$ $= 8x - x^{2}$

Example 5

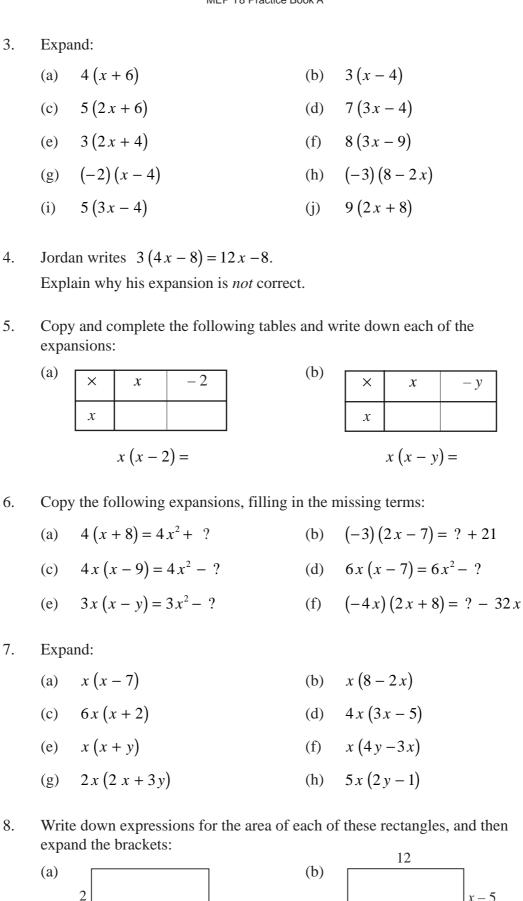
Expand (-3)(4-2x).

3

Solution

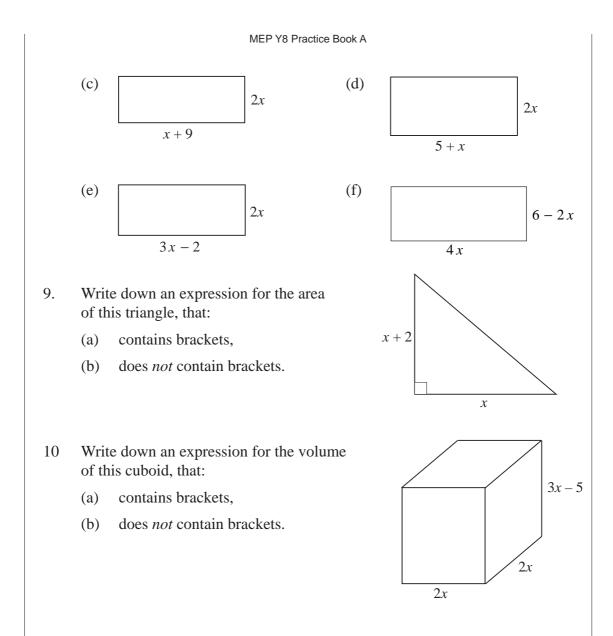
$$(-3) (4 - 2x) = (-3) \times 4 - (-3) \times 2x$$
$$= -12 - (-6x)$$
$$= -12 + 6x$$

Exercises


1. Calculate:

(a)	-6 + 17	(b)	6 – 14	(c)	-6 - 5
(d)	6 - (-9)	(e)	-11-(-4)	(f)	$(-6) \times (-4)$
(g)	$8 \times (-7)$	(h)	$88 \div (-4)$	(i)	6 (8 – 10)
(j)	5 (3 – 10)	(k)	7 (11 – 4)	(1)	(-4)(6-17)

2. Copy and complete the following tables, and write down each of the expansions:


(a)	×	x	2	(b))	×	x	- 7
	4					5		
		4(x+2)) =			5	5(x-7)	=
(c)	×	x	3	(d	l)	×	2 <i>x</i>	5
	4					5		

8.1

- y

x + 4

8.2 Linear Equations

Expanding a bracket will usually be the first step when solving an equation like

4(x+3) = 20

Example 1

Solve

$$5(x-3) = 35$$

Solution

	5(x-3)	= 35
Expanding brackets gives:	5x - 15	= 35
Adding 15 to both sides gives:	5 <i>x</i>	= 50
Dividing by 5 gives:	X	= 10

8.2

Example 2

Solve

6(x+7) = 50

Solution

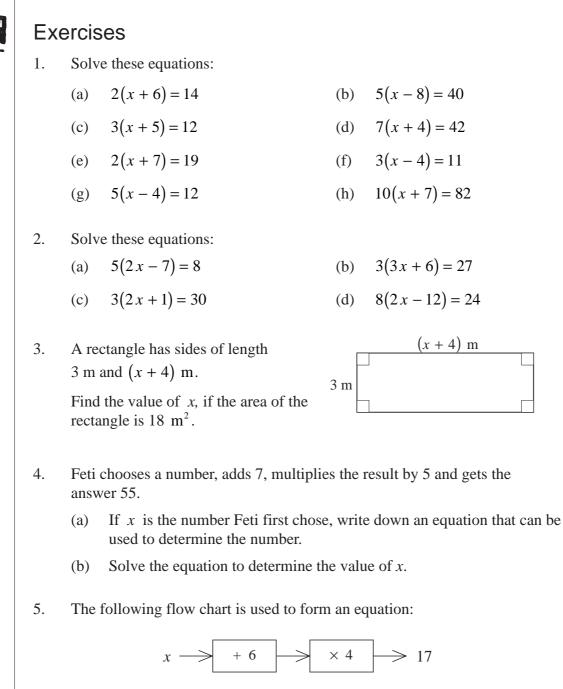
	6(x + 7)	=	50
Expanding brackets gives:	6x + 42	=	50
Subtracting 42 from both sides gives:	6 <i>x</i>	=	8
Dividing by 6 gives:	x	=	$\frac{8}{6}$
		=	$1\frac{1}{3}$

Example 3

Gilda thinks of a number and adds 7 to it. She then multiplies her answer by 4 and gets 64.

- (a) Write down an equation that can be used to calculate the number with which Gilda started.
- (b) Solve your equation to give the number.

Solution


(a) Start with *x*.

Add 7 to give x + 7

Multiply by 4 to give 4(x + 7)

This expression equals 64, so the equation is 4(x + 7) = 64

(b)		4(x + 7)	=	64
	Expanding brackets gives;	4x + 28	=	64
	Subtracting 28 from both sides gives:	4 <i>x</i>	=	36
	Dividing by 4 gives:	x	=	$\frac{36}{4}$
		=	9	

- (a) Write down the equation.
- (b) Solve the equation to find the value of *x*.
- 6. Solve the following equations:
 - (a) 4(7-x) = 20 (b) 3(9-x) = 15
 - (c) 6(5-2x) = 18 (d) 5(7-3x) = 20
 - (e) 2(10-3x) = 17 (f) 6(9-5x) = 4

8.2 MEP Y8 Practice Book A 7. Alice thinks of a number, subtracts it from 11 and then multiplies her answer by 5 to get 45. What was the number that Alice started with? 8. Solve the following equations: (a) 2(x + 1) = 6(x - 3) (b) 3(x + 4) = 11x(c) 5(x + 4) = 2(10x + 1) (d) 4(7 - x) = 5(x + 2)9. 9. (a) Write down an expression for the area of the triangle. (b) What is x if the area is 15 m² ?

8.3 Common Factors

As well as being able to remove brackets by expanding expressions, it is also important to be able to write expressions so that they include brackets; this is called *factoring* or *factorisation*.

Example 1

Factorise

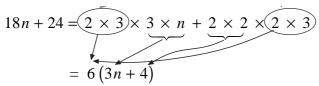
4x + 6

Solution

First write each term as a product of factors:

$$4x + 6 = 2 \times 2 \times x + 2 \times 3$$
$$4x + 6 = 2(2x + 3)$$

[Note that 2 is the only factor common to both terms and is placed outside the brackets.]


Now you can check your answer by expanding it.

Example 2

Factorise

18n + 24

Solution

Note that both 2 and 3 are factors of both terms, and so $2 \times 3 = 6$ is placed outside the brackets.

Example 3

Factorise

 $4x^2 + 6x$

Solution

 $4x^{2} + 6x = 2 \times 2 \times x \times x + 2 \times 3 \times x$

= 2x(2x+3)

Note that both 2 and x are factors of both terms, and so $2 \times x = 2x$ is placed outside the brackets.

Example 4

Factorise

 $5x + 20x^2$

Solution

 $5x + 20x^2 = 5 \times x + 4 \times 5 \times x \times x$

=5x(1+4x)

Note that because 5 and x are factors of both terms, a 1 must be introduced in the bracket when the 5x is placed outside the brackets.

You can check the calculation 'backwards':

$$5x(1+4x) = 5x \times 1 + 5x \times 4x$$

= $5x + 20x^{2}$

8.3

Example 5

Factorise

 $3xy^2 + 12x^2y$

Solution

 $3xy^{2} + 12x^{2}y = 3 \times x \times y \times y + 3 \times 4 \times x \times x \times y$

=3xy(y+4x)

Note that 3, x and y are factors of both terms, and so $3 \times x \times y = 3xy$ is placed outside the brackets.

Exercises

1. Factorise:

(a)	2x + 4	(b)	5x + 15	(c)	6x + 18
(d)	5x - 25	(e)	3x - 21	(f)	7x + 35
(g)	9x - 12	(h)	15x + 20	(i)	42x + 15

2. Factorise:

(a)	$3x^2 + x$	(b)	$5x^2 + 10$	(c)	$6x - 3x^2$
(d)	$6x^2 - 4x$	(e)	$21x^2 + 14x$	(f)	$15x - 25x^2$

3. Denise states that

$$4x + 6x^2 = x(4 + 6x)$$

- (a) Is her statement true?
- (b) Describe how it could be improved.
- 4. For each statement below, decide if it has been fully factorised and if not, complete the factorisation:
 - (a) $x^2 + x = x(x+1)$ (b) $3x^2 + 9x = 3(x^2 + 3x)$
 - (c) $5x 30x^2 = x(5 30x)$ (d) $8x^2 32x = 4(2x^2 8x)$

(e)
$$6x^2 - 18x = 3x(2x - 6)$$
 (f) $15x - 6x^2 = 3(5x - 2x^2)$

	MEP Y8 Practice Book A			
5.	Exp	lain why the following factorisatior	n is <i>inc</i>	orrect:
		$15x + 24x^2 = 3x$	(5+24	4 x)
6.	Fact	orise:		
0.		xy + xz	(b)	xyz + 3yz
	(c)	4 pq - 8qr	(d)	5xyz + 20uxy
	(e)	5xy - 4py	(f)	7xy + 12xz
7.	Fact	orise:		
	(a)	$x^2 y + x y^2$	(b)	$3x^2y^2 + 6xy^2$
	(c)	$5x^2y - 35xy$	(d)	$22 x y + 4 x y^2$
	(e)	$x^2 yz + x y^2 z$	(f)	$x^2 y - x^3 z$
	(g)	$x^6 y^2 + x y^3$	(h)	$x^4 y^3 + x^2 y^6$
8.	(a)	Expand $x(x+y+z)$.		
	(b)	Factorise $5x^2 + 2xy + 4xz$.		
9.	Fact	orise:		
	(a)	3x + 9y + 18z	(b)	$4x^2 + 2x + 8xy$
	(c)	6x - 3xy + 12xz	(d)	5xz + 20x - 35xy
	(e)	$7x^2 + 14xy - 21xy^2$	(f)	4x + 6xz + 15xy
10.	Fact	orise:		
	(a)	$4x^2y + 12x^3y^2 + x^2$	(b)	$6x^7y^2 - 4x^5y - x^4y^2$
	(c)	$3x^2y^2 - 4xy^3 + x^4y$	(d)	$5x^7y - x^2y^3 + 4x^3z$

8.4 Expansion of Two Brackets

When two brackets are multiplied together, for example,

(x+2)(x+3)

every term in the *first* bracket must be multiplied by *every* term in the *second* bracket.

Example 1

Use a table to determine

$$(x+2)(x+3)$$

E.

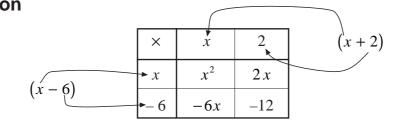
Solution		(x	+ 3)
	×	x	3
(x + 2)	► x	x^2	3 <i>x</i>
(x + 2)	► 2	2 <i>x</i>	6
(x+2)		$\frac{x^2}{2x}$	3 <i>x</i> 6

The multiplication table is formed using the two brackets.

The contents of the table give the expansion.

$$(x+2)(x+3) = x^2 + 3x + 2x + 6$$
 or $x^2 + 3x$
= $x^2 + 5x + 6$ $+ 2x + 6$

$$= x^2 + 5x + 6$$


(in

Example 2

Use a table to determine

$$(x-6)(x+2)$$

Solution

So,

$$(x-6)(x+2) = x^2 + 2x - 6x - 12$$
 or $x^2 + 2x$
= $x^2 - 4x - 12$ $- 6x - 12$
= $x^2 - 4x - 12$

An alternative method for expanding two brackets is shown in the next example.

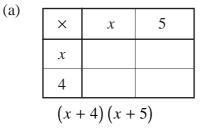
E

Example 3

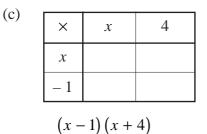
Determine

$$(x+2)(x-7)$$

Solution


$$(x+2)(x-7) = x(x-7) + 2(x-7)$$

= $x^2 - 7x + 2x - 14$ or $x^2 - 7x$
= $x^2 - 5x - 14$ $+ 2x - 14$
= $\overline{x^2 - 5x - 14}$


(b)

Note how each term in the first bracket multiplies the whole of the second bracket.

Exercises

1. Copy and complete the following tables and write down each of the expansions:

	×	x	- 7		
	x				
	4				
(x+4)(x-7)					

(d)	×	x	- 5
	x		
	- 2		

$$(x-2)(x-5)$$

- 2. Expand:
 - (a) (x+3)(x+4)
 - (c) (x-5)(x-1)
 - (e) (x+2)(x-3)

(b) (x-2)(x+5)(d) (x+7)(x-3)(f) (x+4)(x-1)

(b) (x+2)(x-2)

(d) (x-7)(x+7)

(b) $(x-1)^2$

(d) $(x-5)^2$

(b) (3x+1)(4x+1)

(f) $(4x-3)^2$

6

3. Expand: (a) (x-1)(x+1)(c) (x-5)(x+5)How are the answers to this question different from the others you have done? Explain what is wrong with this statement: 4. $(x+5)^2 = x^2 + 25$ Expand: 5. (a) $(x+1)^2$ (c) $(x+3)^2$ (a) Copy and complete this table: 6. Х х 2x1 What is the expansion of (b) (2x+1)(x+6)? 7. Expand: (a) (2x+1)(2x+4)(d) (4x-1)(5x+1)(c) (2x-1)(3x+2)(e) $(2x+1)^2$

Write out the following expansions, filling in the missing terms: 8.

- (a) $(x+7)(x+6) = x^2 + ? + 42$ (b) $(x+6)^2 = x^2 + ? + 36$
- (c) $(x-2)(x-5) = x^2 + ? + 10$ (d) $(x-1)(2x+1) = 2x^2 x ?$
- (e) (x+3)(2x+1) = ? + 7x + 3 (f) $(x-7)^2 = x^2 ? + 49$

9. Explain what is wrong with this statement:

$$(x+4)(x-5) = x^2 - 20$$

8.4

MEP Y8 Practice Book A

10. Write out the following expansions, filling in the missing terms:

- (a) $(x + ?)(x 1) = x^2 + x 2$
- (b) $(x+4)(x-?) = x^2 2x 24$
- (c) $(2x+3)(x+?) = 2x^2 + 9x + ?$
- (d) $(x ?)(x + 5) = x^2 2x ?$
- (e) $(x + ?)(x + ?) = x^2 + 4x + 4$
- (f) $(x + ?)(x + ?) = x^2 + 6x + 8$

11. The following example shows how to determine $(x + 1)^3$.

×	x	1	$(-, 1)^2 = 2 + + 1$
x	x^2	x	$(x+1)^2 = x^2 + x + x + 1$
1	x	1	$= x^2 + 2x + 1$

×	x^2	2 <i>x</i>	1
x	x^3	$2x^2$	x
1	x^2	2x	1

$$(x+1)^{3} = (x+1)(x^{2}+2x+1)$$

= $x^{3}+2x^{2}+x+x^{2}+2x+1$
= $x^{3}+3x^{2}+3x+1$

Use the same method to determine:

- (a) $(x+1)^4$,
- (b) $(x+1)^5$.

Compare your answers with Pascal's Triangle and describe any connections that you see.