1 Mathematical Diagrams

1.1 Mileage Charts

In this section we look at mileage charts.

Example 1

Distances in the table below are given in miles.

Using the table, answer the following questions:
(a) How far is it from Taunton to Exeter?
(b) Jerry travels from Barnstaple to Exeter, then from Exeter to Plymouth, and finally from Plymouth back to Barnstaple.
How far does he travel altogether?

Solution

(a) 34 miles (see table and diagram opposite).
(b) Barnstaple to Exeter: 55 miles Exeter to Plymouth: 44 miles Plymouth to Barnstaple: 67 miles

$$
\begin{aligned}
\text { Total distance } & =55+44+67 \\
& =166 \text { miles }
\end{aligned}
$$

Example 2

The network diagram opposite shows the distances, in miles, between some towns.

Copy and complete the following mileage chart to show the shortest distances between these towns:

Solution

The direct distances can be completed first:
the shortest route from Amesbury to Devizes is via Upavon, a total of 19 miles;
the shortest route from Devizes to Salisbury is via Shrewton, a total of 25 miles;
the shortest route from Salisbury to Upavon is via Amesbury, a total of 17 miles;
the shortest route from Shrewton to Upavon is via Amesbury, a total of 15 miles.

With this information, the table can now be completed, as shown opposite.

Exercises

1. Use the table opposite, where the distances are given in miles, to find out how far it is from:
(a) Leeds to Lincoln,
(b) Hull to York,
(c) Leeds to Manchester,
(d) Sheffield to Leeds,
(e) Manchester to York.

2. Ross travels from Leeds to Manchester, then from Manchester to Sheffield and finally from Sheffield back to Leeds. Use the table in question 1 to calculate the total distance he travels.
3. Hannah drives from Bristol to Exeter, continues to Plymouth, on to Barnstaple and from there back to Bristol. Use the table in Example 1 to calculate the total distance she drives.
4. The table opposite gives the distances in kilometres between some towns in northern France.

What is the distance between:
(a) Alençon and Paris,
(b) Reims and Orleans,
(c) Rouen and Calais,
(d) Paris and Reims,
(e) Le Mans and Rouen?

5. Debbie drives from Calais to Paris and back while she is on holiday. Use the table in question 4 to calculate how far she travels altogether on this journey.
6. Laura travels from Calais to Paris, on to Alençon and then to Rouen before returning to Paris. Use the table in question 4 to calculate how far she travels altogether.
7. The diagram below shows the distances, in miles, between some junctions on the M2 motorway:

Copy and complete the chart below to show the shortest distances between junctions:

8. The following network diagram shows the distances, in miles, between some towns in Wales:

Use the information in the diagram to complete a copy of the table on the next page, giving the shortest distances between the towns.

9. The network diagram below shows the distances, in miles, by road between some towns close to the Scottish border:

Use information from the diagram to complete a copy of the table opposite, giving the shortest distances between the towns.

10. The diagram below shows stations on the GNER railway:

Some distances, in miles, are shown in the table opposite.
(a) Copy the table and fill in the missing distances.
(b) What distance is travelled in a return journey between London and York?

1.2 Using Flow Charts to Plan Practical Tasks

A flow chart can be used to organise the instructions for carrying out a task.
Boxes of different shapes are used for particular operations:

START or END POINTS

INSTRUCTION BOXES

DECISION BOXES

Each box contains only one instruction.

Example 1

Draw a flow chart to give the instructions for making a mug of tea.

Solution

The flow chart gives the instructions for making a mug of tea without sugar.

A mug of tea with sugar, needs this extra instruction box:

Note that the instruction box \qquad can go earlier in the flow chart, for example, immediately after the
 box. The extra box ADD SUGAR can also go in various positions: for example, before or after the $\begin{gathered}\text { PUT TEA BAG } \\ \text { IN MUG }\end{gathered}$ box, or before or after the \qquad box.

Example 2

The instruction $\begin{gathered}\text { BOIL } \\ \text { KETTLE }\end{gathered}$ in Example 1 can be broken down into separate stages.

Draw a flow chart to show this.

Solution

Example 3

Draw a flow chart showing how to find a programme you would like to watch on television.

Solution

Exercises

1. Draw a flow chart showing how to prepare a drink of blackcurrant squash in a glass.
2. Draw a flow chart for each of the following:
(a) making a cup of coffee with milk and sugar,
(b) buying a can of drink from a vending machine,
(c) making a telephone call from a pay phone,
(d) shutting down a computer.
3. Draw a flow chart that describes how to cross a road. You should include decision boxes in your flow chart.
4. Imagine you are driving along a road. You see a 30 mph speed limit sign and a speed camera. Draw a flow chart that you, as a sensible driver, would be advised to follow.
5. Jerry needs to work out 4.72×11.61 using a calculator.
(a) Draw a flow chart to show how to carry out this calculation on a calculator.
(b) Redraw the flow chart to include all the following processes:
(i) estimating the answer to 4.72×11.61,
(ii) calculating the answer to 4.72×11.61
(iii) comparing the answer with the estimate to decide whether the calculator answer is reasonable.
6. You are playing Snakes and Ladders.
(a) Draw a flow chart to describe how to move your counter for one go.
(b) Describe how you would change your chart when you have an extra turn after throwing a six.

1.3
 Using a Flow Chart for Classification

Flow charts can also be used to sort or classify things.

Example 1

This flow chart can be used to classify angles between 0° and 360°. What comes out at the end points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E ?

Solution

A Angles less than 90°
ACUTE ANGLES

B Angles equal to 90°
RIGHT ANGLES

C Angles greater than 180°
REFLEX ANGLES

D Angles equal to 180°
ANGLES ON STRAIGHT LINES

E Angles greater than 90° but less than 180°
OBTUSE ANGLES

Example 2

The flow chart below can be used for sorting quadrilaterals:

Where would each of these shapes come out?
(a)

(b)

(d)

(e)

(f)

Solution

(a) A parallelogram; comes out at D.
(b) A square; comes out at A.
(c) A trapezium; comes out at E.
(d) Quadrilateral with no special properties; comes out at F .
(e) A rectangle; comes out at B.
(f) A rhombus; comes out at C.

Exercises

1. The angles below are classified using the flow chart in Example 1. Where does each angle come out of the flow chart?
(a)

(b)

(c)

(d)

(e)
(f)

2. The quadrilaterals below can be classified using the flow chart in Example 2. Where does each quadrilateral come out of the flow chart?
(a)

(b)

(d)

(e)

(f)

3. Draw a flow chart that will sort trees, into those that shed their leaves during winter, and those that do not.
4. Draw a flow chart that will sort triangles into equilateral (all sides of equal length), isosceles (two sides of equal length) or scalene (all sides of different lengths).
5. Draw a flow chart that will sort polygons into the following categories:

Triangles

Quadrilaterals
Pentagons
Hexagons
Heptagons
Octagons
Polygons with more than 8 sides
6. The flow chart on the following page can be used to sort animals.
(a) Where would each of these animals come out of the flow chart?

Monkey	Bird	Giraffe
Horse	Centipede	Elephant
Zebra	Pig	Kangaroo
Fish	Dolphin	Cat

(b) Name one more animal that would come out of the flow chart at each of the end points $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E .
7. The following flow chart will sort numbers. The numbers 1 to 10 are put into this flow chart. Where do they each come out?

8. Draw a flow chart that will classify numbers as odd or even.
9. Draw a flow chart that will test numbers up to 20 to see if they are prime.

1.4 Networks

In this section we consider networks. Problems can be solved by finding the shortest or quickest route through a network, which can represent a system of roads, pipelines, cables, or anything else that connects different points or places.

Example 1

Find the shortest route from A to G, using the distances shown on the network opposite:

Solution

First find the shortest distances from A to the points B, C and D ; these are shown in circles on this diagram:

Now work out the shortest distances from A to E and F and put these in circles on the diagram:

It is now possible to see that the shortest route from A to G is 10 , using the route, A B E G.

Example 2

Find the shortest route from S to T through this network:

Solution

The diagram opposite shows the shortest routes from S to A, C and D :

The shortest routes from S to B and E are now added to the diagram:

We can see that the shortest route from S to T is 6 , using either route S D C E T or route S ACET.

Exercises

1. The network diagram below shows the distances between some towns and cities:

Find the shortest distance and route between:
(a) Manchester and Nottingham,
(b) Sheffield and Birmingham.
2. The diagram below shows the shortest journey times, in hours, between 5 towns, A, B, C, S and T:

Find the shortest journey time from S to T and state the route.
3. The network diagram below shows the distances between some towns and cities in the south west of England:

Find the shortest distance and route between:
(a) Bodmin and Exeter,
(b) Plymouth and Minehead.
4. The network diagram below shows some of the places on the Isle of Man, and the distances between them:

Distances in miles

Which is the shortest route and what is the distance from:
(a) Douglas to Sulby,
(b) Ramsey to Port Erin,
(c) Peel to Laxey?
5. Use the network diagram below to find both the shortest route and the distance from Carlisle to Lincoln.

1.5 Critical Path Analysis

When you are planning to carry out a task, critical path analysis can be used to help you find the most efficient way to do it; this works by showing how activities need to be scheduled.

For example, when making your breakfast, you can boil the kettle and cook your toast at the same time. You do not have to wait until you have boiled the kettle before you start to make your toast, whereas you do have to boil the kettle before you can make a cup of tea.

Example 1

Veronica is going to make a cake. She has six tasks to do, which are listed below:

Activity	Time needed in minutes	Preceded by	
A	Warm oven	15	
B	Weigh ingredients	3	
C	Mix ingredients	5	Weigh ingredients
D	Bake cake	20	Mix ingredients
E	Wash up mixing bowl and utensils	8	Mix ingredients
F	Wash up cake tin	2	Bake cake

Draw an activity network and find the shortest time to make the cake.

Solution

The first step is to draw an activity network, which is a way of showing the data concerning the tasks that have to be completed, how long each one takes, and the order in which they must be undertaken. The activity network for making Veronica's cake is shown below:

We move through the network from left to right, calculating the earliest start time for each activity. For example, D (bake cake) cannot begin until A, B and C have all happened, i.e. the oven is warm and the cake ingredients have been weighed out and mixed. The oven requires at least 15 minutes to warm, so the earliest time that D and E can start is 15 minutes after warming the oven. In turn, this means that F cannot start until 35 minutes have elapsed.

At this stage, we can see that the shortest time to complete the task of baking the cake is 37 minutes.
We then work through the network from right to left, calculating the latest start time for each activity. For example, E could begin 29 minutes after the start, and still finish at the same time as F. However, D must begin no later than 15 minutes after the start, for the whole activity to be completed in 37 minutes.

The critical path is A D F as these tasks must be completed on time or the whole project will be delayed.
For activity E there is a float time of 14 minutes. We use this term because there is a 22 minute period in which the activity must take place, but the task itself takes only 8 minutes. C also has a float time, but this time of 7 minutes duration.
There is no float time for tasks on the critical path.

Example 2

On the following activity network the numbers show the time, in minutes, for each task. Complete the earliest and latest finishing times for each task, identify the critical path, and state the shortest completion time for the whole activity.

Solution

The layout of the activity network, from left to right, tells us the following information about the order in which the tasks must be carried out:

Task	Time (minutes)	Preceded by
A	2	
B	3	A
C	4	
D	4	C
E	2	A, B
F	2	A, B
G	8	A, B
H	8	A, B, C, D, E
I	7	A, B, F

We first calculate the earliest start time for each activity by working from left to right through the activity network:

We now work back from right to left, calculating the latest start time for each activity:

So the critical path is C D H, because for this route the earliest start times match the latest start times.

The shortest completion time is 16 minutes.
The diagram shows that there are float times for some activities; for example, 2 minutes for activity I , and 1 minute for both activities F and B .

Example 3

The table lists the tasks needed to completely refurbish a kitchen; the times are given in days. Find both the critical path, and the shortest completion time.

	Task	Time needed	Preceded by
A	Design kitchen	8	
B	Make kitchen units	11	A
C	Remove old units	2	A
D	Fit new power points	1	C
E	Fit new plumbing	2	C
F	Paint and decorate	3	D, E
G	Fit new units	5	B, F
H	Fix wall tiles	3	G

Solution

The activity network is shown below:

Now move from left to right through the network to find the earliest start times:

Now work back through the network, putting in the latest start times:

The critical path is A B G H, as shown in the diagram, and the shortest completion time is 27 days.

Exercises

1. The activity diagram below shows the time, in minutes, for different parts of a process. Find the critical path and the shortest possible completion time.

2. Jamil and Halim are making a model garage for their brother's birthday present.

There are a number of tasks that must be completed to make the garage; these are listed in the table opposite:

	Task	Time needed (hours)
A	Design the garage	1
B	Buy materials	2
C	Cut out wooden panels	2
D	Glue panels in place	1
E	Paint garage	2
F	Make cars	3
G	Paint cars	3

The activity network is shown below:

Find the critical path and the shortest possible completion time.
3. The following instructions must be carried out to put up a dome tent:

	Task	Time (mins)	Preceded by			
A	Peg down inner tent	3				
B	Assemble poles	1				
C	Fit poles in flysheet	4	B			
D	Erect flysheet	4	A,	B,	C	
E	Peg down flysheet	2	A,	B,	C,	D
F	Hang inner tent from poles	2	A, B,	C,	D	
G	Attach guy ropes	4	A,	B,	C,	D,

The activity network is shown below:

Find both the critical path, and the shortest time needed to put up the tent.
4. You are going to prepare a meal of chicken and potato pie, peas and gravy. You have to carry out the tasks listed below:

Task		Time (mins)	Preceded by
A	Peel potatoes	10	
B	Heat oven	5	
C	Make pie	12	A
D	Cook pie	40	B, C
E	Make gravy	5	B, C
F	Cook peas	8	B, C
G	Cook potatoes	25	A
H	Lay table	2	

(a) Draw an activity network in line with the information given in the table.
(b) Find both the critical path and the shortest time needed to prepare the meal.
(c) Which tasks have a float time? State the float times for these activities.
5. The building of a house is broken down into the tasks listed in the table below. Draw a network diagram and use it to find the critical path and the shortest possible construction time.

	Task	Time (days)	Preceded by
A	Order materials	5	
B	Lay drains	7	A
C	Lay foundations	7	B
D	Erect blockwork	11	C
E	Roofing work	5	D
F	Install floors	4	E
G	Plumbing and heating	10	F
H	Electrical installation	6	F
I	Install windows	5	D
J	Plastering	6	G,
K,$~ I ~$			
K	Decoration	5	J
L	Install fittings	3	K
M	Clear site	2	L
N	Lay paths	2	D

