2 Formulae

2.1 Using Formulae

1.

 $A = \pi ab$ where *a* and *b* are given lengths (as shown). Find the area of an ellipse when

b

c

(a)
$$a = 4, b = 2$$

The area of an ellipse is given by

(b)
$$a = 2, b = 4$$

(c)
$$a = b = 3$$

2. The perimeter length of a triangle is given by

$$p = a + b + c$$

where *a*, *b* and *c* are the lengths of the three sides of the triangle.

Find the perimeter length when

(a) a = 1, b = 2 and c = 3

- (b) a = 4, b = 3 and c = 2
- (c) a = b = c = 3

If a = 4, b = 3 and p = 11, what is the length c?

3. Euler's formula for the vertices of a shape states that

v = e - f + 2

(b) f = 4x - 2y

where e is the number of edges and f is the number of faces. Determine v when

(a) e = 9, f = 5 (b) e = 6, f = 4

If v = 8 and e = 12, determine *f*.

f = x + y

(a)

4. Find the value of the function *f* where x = 2 and y = 3 and when

(c)
$$f = x^2 + y^2$$
 (d) $f = \frac{x+y}{10}$

(e) $f = \frac{x+2}{y+1}$ (f) f = xy - 4

(g)
$$f = 2x^2 - y^2$$
 (h) $f = \frac{2x+1}{y}$

(i)
$$f = x^2 y^2$$
 (j) $f = (x + y)^2$

- 5. Repeat Question 4 with x = 3 and y = 4.
- 6. Find the value of the functions

$$f = \sqrt[3]{x y z}$$
 and $g = \frac{x + y + z}{3}$

when

(a) x = y = z = 2 (b) x = 1, y = 2, z = 3 (c) x = 2, y = 3, z = 4

2.2 Construct and Use Simple Formulae

1. Find a formula for the perimeter, *P*, of each of the shapes below.

In each case, find A and P when a = 2 cm.

3*a*

0

a

5a

14a

Т

6a

5a

	MEP Practice Book SA2										
	3. Petrol costs 58p per litre. What is the cost, in pounds, of <i>x</i> litres?										
		Use	Use your formula to find the cost of								
		(a)	10 litres		(b)	50 liti	res				
	4.	A pie	ece of wire is b	ent into the	shape	shown		b			
		Find	the total length	of the wire	used.		a	U	a	<i>b</i>	
		Simp (All o	olify your answ dimensions are	er. in centimet	res.)		a	b	a		
		If the $a = 2$	e total length of 2 cm, what is	the wire is the length o	24 cm f <i>b</i> ?	and				Ь	
	5.	A tra trave	in operating co l a distance <i>x</i> n	mpany calc niles, what i	ulates s the f	its fare ormula	es using the 1 for the cos	formul t in	a 12p j	per mile. If yo	u
		(a)	pence		(b)	pound	ls				
		Use	your answer to	(b) to find t	he cos	st when	you travel				
		(i)	10 miles ((ii) 100 m	niles	(iii)	200 miles	(iv)	1000	miles	
	6.	A rer trave	novals firm cha lled by its van.	arges a fixed If the van	l cost travels	of £100 s <i>x</i> mile	0 plus a pay es, write dov	ment o wn a foi	f £2 fo rmula :	r every mile for the total co	st.
		Find	the actual costs	s for journey	ys of						
		(a)	50 miles		(b)	100 n	niles		(c)	200 miles	
2.3	Re	evis	sion of	Nega	tive	e N	umbe	ers			
	1.	Witho	out a calculato	r, answer th	e follo	wing q	uestions.				
		(a)	5 – 2		(b)	-5 +	6		(c)	-7 + 4	
		(d)	12 – 14		(e)	-10 -	+ (-5)		(f)	-10 - (-5)	
		(g)	-15 - 5		(h)	16 –	(-8)		(i)	$4 \times (-2)$	
		(j)	$(-4) \times (-2)$		(k)	(-8)	× 3		(1)	$(-10) \times (-5)$)
		(m)	14 ÷ (-7)		(n)	(-10)) ÷ 2		(0)	$(-10) \div (-2)$)
		(p)	$20 \div (-5)$		(q)	(-15)	÷ (-3)		(r)	(-16) ÷ 4	
	2.	Evalu	uate, without us	sing a calcu	lator:						
		(a)	$(-2)^2$		(b)	(-1) >	×1		(c)	$(-1) \times (-1)$	
		(d)	$(-4)^{2}$		(e)	3 ² + ($(-4)^2$		(f)	$(-6)^2 + (-8)^2$	2
		(g)	$\left(-1\right)^2 \div \left(-2\right)^2$		(h)	$(-2)^2$	$\times (-3)^{2}$				
						40					

MEP Practice Book SA2

(i)	$4 \times (-5) + ((-100) \div (-100))$	-4))	(j) $(-20) \div (-$	-5) + (-	$(-2)^2$
(k)	$\sqrt{(-3)^2 + (-4)^2}$	(1)	$\left[\left(-3\right) \times \left(-4\right) \right] \div \left(-2\right)$		
(m)	$(-2)^3$	(n)	$(-1)^2 \times (-1)$	(0)	$(-5)^3$

3. The outside temperature was monitored every 4 hours for one day. Here is the recorded information.

Time	Temperature °C
00.00	-11
04.00	-7
08.00	-1
12.00	5
16.00	6
20.00	0
24.00	-5

- (a) What is the difference between the lowest and highest temperatures?
- (b) What is the difference between the temperature at

(i)	04.00 and 08.00	(ii)	04.00 and 12.00
(iii)	16.00 and 24.00	(iv)	08.00 and 20.00
(v)	00.00 and 24.00	(vi)	20.00 and 24.00?

2.4 Substitution into Formulae

1. The speed of a bike, *v* metres per second, is given by the formula

$$v = u + ft$$

when *u* is its initial speed (in m/s), *f* its acceleration (in m/s²) and *t*, the time in seconds.

Determine v when

- (a) u = 0, f = 5 and t = 10 (b) u = 20, f = 2 and t = 5
- (c) u = 20, f = 0 and t = 5

(d)
$$u = 40, f = -5 \text{ and } t = 5$$

(e)
$$u = 40, f = -5 \text{ and } t = 8$$

In each case, briefly describe the motion of the bike.

2. The Fahrenheit scale, (F) and the Celsius scale (C) are related by the formula

$$F = \frac{9}{5}C + 32$$

- (a) Give the following temperatures in Fahrenheit.
 - (i) Normal body temperature: 37 °C
 - (ii) Boiling point of water: 100 °C

(b) Give the following temperatures in degrees Celsius.

- (i) Freezing point of water: 32 °F
- (ii) Singapore's average daily temperature: 86 °F

3. If x = 3, y = 4 and z = 7, find the values of the following expressions:

(a)	5 <i>yz</i>	(b)	xyz	(c)	$\frac{12}{xy}$
(d)	$\frac{xy}{18}$	(e)	2x + 3y	(f)	x - 5y + 2z
(g)	xy + yz	(h)	$x^2 + y^2$	(i)	$2z^2 + y$
(j)	$y^2 + x^3$	(k)	xy^2	(1)	$4x^2y^2$

4. If
$$a = 3$$
, $b = 2$ and $c = -1$, find the value of each of the following.

- (a) $a^{3}+b^{3}+c^{3}-2abc$ (b) (2a+b-c)(4b-3c)(c) $(a-b)^{2}-(b-c)^{2}$ (d) $\frac{a}{b}+\frac{b}{c}-\frac{c}{a}$ (e) $\frac{a+1}{2}-\frac{b+c}{4}+\frac{c-a}{3}$ (f) $a^{b}-c^{a}+b^{a}$ (g) $2a-3b^{2}+3abc^{2}$ (h) $a^{2}+3b^{3}-4c^{5}$ (i) $\frac{a+b}{c}-\frac{ab-c}{b}$ (j) $\frac{3a-b}{b-c}+\frac{a+c}{b-a}$ (k) $\frac{2c^{2}-3a}{bc-a}-\frac{4b}{3a}$ (l) $\frac{a^{2}-b^{2}}{c^{2}}-\frac{a^{3}-c}{(c-3b)}$
- 5. Find the value of $x^3 + 2xy^2 + y^3$ when x = 2 and y = -1.
- 6. Find the value of $\frac{x+1}{x-1} + \frac{2x-1}{2x+1}$ when x = -2.

7. Find the value of
$$2ab + 3bc^2$$
 when $a = 0$, $b = 5$ and $c = -2$.

8. The distance travelled, *s* metres, by a car is given by

$$s = ut + \frac{1}{2} ft^2$$

Here *u* is the car's initial speed (in m/s), *t* the time (in seconds) and *f* the acceleration (in m/s²).

(a) Find *s* when

(i)	u = 0, t = 10, f = 5	(ii)	u = 20, t = 5, f = 6
(iii)	u = 50, t = 4, f = -5	(iv)	u = 60, t = 10, f = -2

(b) If the car travels 400 metres in 5 seconds with initial speed of 40 m/s, what is its acceleration?

2.5 More Complex Formulae

1. It is given that $v^2 = u^2 + 2as$. Find the values of *u* when v = 0.8, a = 0.05 and s = 2.8.

2. It is given that
$$y = \frac{18 - 5x}{2y}$$
. Find

(a) the values of y if x = -6.4

(b)
$$x \text{ if } y = 2\frac{1}{2}$$

3. If
$$S = \frac{n}{2} [2a + (n-1)d]$$
, find

(a) the value of S when
$$n = 10$$
, $a = -2$ and $d = \frac{1}{2}$

- (b) a when S = 440, n = 10 and d = 5.
- 4. The arithmetic mean, *A*, geometric mean, *G*, and harmonic mean, *H*, of three numbers, are given by the formulae

$$A = \frac{a+b+c}{3}, \ G = (abc)^{\frac{1}{3}}, \ H = \frac{3}{\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)}$$

Find A, G and H for the following sets of numbers.

(a)
$$a = 2, b = 3, c = 4$$

(b) $a = 1, b = 3, c = 5$
(c) $a = b = c = 3$
(d) $a = 2.5, b = 3, c = 3.5$

What do you notice about the values of *A*, *G* and *H*?

5. Find *z*, given by each of the following formulae, for the given values of *x* and *y*.

(a)
$$\frac{1}{z} = \sqrt{\frac{1}{x^2} + \frac{1}{y^2}}, x = 2, y = 3$$

(b) $z^2 = x^2 + y^2, x = 3, y = -4$

(c)
$$\frac{1}{z} = \frac{x+y}{x^2+y^2}, x = -2, y = 4$$

(d)
$$\frac{x}{z} = \frac{x}{y} + 1$$
, $x = 5$, $y = 2$

(e)
$$\frac{1}{z^2} = \frac{1}{x^2} + \frac{1}{y}, \quad x = 4, \quad y = 3$$

6. The formula $v^2 = u^2 + 2fs$ connects the initial, (*u*), and final, (*v*), speeds of a car, with its acceleration, (*f*), and distance travelled, (*s*).

Find v (in m/s) when

(a) u = 0, $f = 10 \text{ m/s}^2$, s = 100 m

(b)
$$u = 20 \text{ m/s}, f = 5 \text{ m/s}^2, s = 50 \text{ m}$$

(c) $u = 75 \text{ m/s}, f = -10 \text{ m/s}^2, s = 25 \text{ m}$

2.6 Changing the Subject

1. Make *s* the subject of each of the following:

(a) 2s - 8p = 14 (b) 28 = 4s + r - s (c) 10 - 2s = 12r + 2s

2. In each of the following, make *y* the subject:

(a) y + x = 6 (b) m + y = 2 - n (c) $\frac{k}{5} = \frac{y}{3}$ (d) 3 + m = d + y (e) 5 = y - 3m (f) 2y + 6 = 48 + 2x

3. (a) Given that 4a + b = c - a, express *a* in terms of *b* and *c*.

(b) Given that x - y = 3z, express y in terms of x and z.

- (c) Given that pq = r, express q in terms of p and r.
- (d) Given that a + b = 8c + 7, express *c* in terms of *a* and *b*.

4. Make a the subject of the following formulae:

(a)	a + x = b	(b)	a + h = k	(c)	a - m = n
(d)	a - k = h	(e)	a - b = c + d	(f)	a + c = d + e
(g)	y + a = x	(h)	z - a = 2k	(i)	p = a - q
(j)	5k = p - a	(k)	7k = p + a	(1)	$a-b-c=k^2$
(m)	$b - a + k = h^3$	(n)	m + n + a = k	(0)	m - n - a = h
(p)	7k - h - a = 2a	(q)	$5pq - a = p^2 - q$	(r)	$3xy + a = x^2y$

	(s)	5 <i>a</i> = 15	(t)	ax = 3y	(u)	xay = 3k	
	(v)	2xy = 3ak	(w)	ak = p - q + k	(x)	$ax^2 = 5y - 4$	
5.	Make	a the subject of the	e given	formula.			
	(a)	ax = y	(b)	a(p-4) = q	(c)	ax + by = c	
	(d)	p(a+b) = c	(e)	2a - 3m = 4a - 7	7 (f)	5b - 2a = 3c	
	(g)	$\frac{a}{m} + b = c$	(h)	$x = \frac{2a}{3} + 5z$	(i)	$\frac{p+a}{5} = 3p$	
	(j)	R = m(a + g)	(k)	2b = ax + a	(1)	2m = 65 - 4a	
6.	(a)	The volume of a c	ylinder	is given by			
		$V = \pi r^2 h$ (i) Make <i>h</i> the subject of this equation h					
	(ii) Find h when $r = 3$ cm and $V = 350$ cm ³ .						
	(b)	The total surface a	rea is g	given by			
			S	$=2\pi r^2+2\pi rh$			

- (i) Make *h* the subject of this equation.
- (ii) Find h when r = 3 cm and s = 300 cm².

7. Electrical fuses are available as shown.

The correct fuse to use for an electrical appliance can be calculated using this formula,

$$F = \frac{P}{240}$$

where

F = Fuse rating in amps, P = Power rating in watts.

- (a) Which fuse should be fitted for a toaster with power rating 1100 watts?
- (b) An electric heater needs a 13 amp fuse. What is the largest power rating the heater could have?

(SEG)

By what factor does the radius change when the surface area is doubled?

4. Make *x* the subject of

(a)
$$y = 4x + 2$$
 (b) $y = 1 - 3x$ (c) $y = mx + c$
(d) $y = \frac{1}{x+1}$ (e) $y = 1 + \sqrt{x}$ (f) $y = \frac{1}{1 + \sqrt{x}}$

MEP Practice Book SA2

(g)
$$y = \sqrt{\frac{5x}{a}}$$
 (h) $y = \sqrt{x+1}$ (i) $\frac{1}{y} = \frac{1}{x} + 1$
(j) $\frac{1}{y} = \frac{2}{x} - \frac{1}{x}$ (k) $y = \frac{1}{x} + \frac{1}{x}$ (l) $y = \frac{4}{x}$

(j)
$$\frac{1}{y} = \frac{2}{3} - \frac{1}{x}$$
 (k) $y = \frac{1}{4} + \frac{1}{x}$ (l) $y = \frac{4}{\sqrt{2+x}}$

If $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, make *u* the subject of this formula. Find *u* when 5. f = 3 and v = -2f = 5 and v = 1(b) (a)

The percentage profit, *p*, on the sale of an item is given by the formula 6.

$$p = \frac{100(s-c)}{c}$$

where *s* is the selling price and *c* is the cost price. Express c in terms of s and p.

(MEG)

7. Students conduct an experiment to find *g*, the acceleration due to gravity.

They measure the time, T seconds, for one complete swing of a pendulum of length L centimetres.

The formula for g is

$$g = \frac{4\pi^2 L}{T^2}$$

(a) Find g when
$$L = 39.24$$
 and $T = 1.26$.
Take $\pi = 3.142$ or use the π button on your calculator.

Rearrange the formula to express *T* in terms of *L*, π and *g*. (b)

(SEG)

2.8 **Expansion of Brackets**

Copy and complete the following multiplication tables. Some have been done for 1. you.

(a)

(a)					(b)				
x	y - 2	3у	$\frac{6}{y}$	4 – 3 <i>y</i>		x	-k	$\frac{2k}{3}$	$\frac{2}{3k}$	2 - 2k
-1		-3 <i>y</i>				6	-6k			
$\frac{1}{4}$				$1 - \frac{3}{4}y$		-4			$-\frac{8}{3k}$	
2						3				
$-\frac{1}{2}$			$-\frac{3}{y}$			$-\frac{1}{2}$				

MEP Practice Book SA2

2. Remove the brackets in each of the following algebraic expressions.

(a)	2(u-3)	(b)	8(v + 7)
(c)	4(2x+3y)	(d)	6(5a - b)
(e)	-2(p-q)	(f)	-5(a+b)
(g)	-3(-2u - 3v)	(h)	8(-2u-3v)
(i)	$\frac{1}{2}(10p-6q)$	(j)	$\frac{1}{5}(20x-15)$
(k)	-(b + c)	(1)	-(p-q)
(m)	-x(p+q)	(n)	-y(-x+y)
(0)	-(-p-q)	(p)	-(-t+r)
(q)	$\frac{1}{2}\left(\frac{2}{3}a - \frac{4}{5}b\right)$	(r)	$6a\left(\frac{1}{3}b - \frac{5}{6}c\right)$
Simp	lify each of the following algebra	raic exp	pressions.
(a)	(3x-2y)+(4x-y)	(b)	(p-m)+(m-2p)

(c)	5(x-2) + 3(4-x)	(d)	(3a+2b)-(a-b)
(e)	2(3m+n) - 3(m-3n)	(f)	(x - y) - (y - z) - (z - x)

(g)
$$3a(b-c) + (3b-2)a$$
 (h) $m(m-n) - n(n-m)$

(i)
$$x(y-z) + y(z-x) + z(x-y)$$
 (j) $3(2y+5z) - 4(2y-x)$

Multiply out and simplify each of the following expressions.

4.

3.

- (b) 5z(z-2y)6(3x+y)(a) (c) $\frac{1}{2}(2xy-4yz)$ (d) q(p+2r-3s)(e) (p+q)(r+s)(f) (x + y)(z + 2w)(g) (3a+b)(a+c)(h) (m+2n)(2p+3q)(i) (a-b)(c+d)(j) (2e - f)(2g - h)(1) (a+7)(2b+5)(k) (3p - 4q)(s + 2t)(m) (x+3)(x+4)(n) (a+5)(a-3)(o) (x-7)(x-6)(p) (3+c)(6-c)
- (q) (1-3x)(4+3x) (r) (2p+3)(p+5)

(s)
$$(4x + 5y)(2x + 3y)$$

(t) $(d - 7)(d - 5)$
(u) $(a + 5)^2$
(v) $(x - 3)^2$
(w) $(b + 2)^2$
(x) $(e - 4)^2$
(y) $(2x + 1)^2$
(z) $(3x - 2)^2$

2.9 Factorisation

- 1. Factorise the following:
 - (a) 2x + 4(b) 9 3x(c) 2 + 10x(d) -5 15x
 - (e) $x^2 + 2x$ (f) $x 3x^2$
 - (g) $4x + 2x^2$ (h) $3x^2 9x$
 - (i) $10x 5x^2$ (j) $7x^2 + 21$
 - (k) $3x^2 x^3$ (l) $2x + 8x^3$
 - (m) $2x^3 + 10x^2$ (n) $4x^2 4$

The following expressions have been partly factorised. Complete the factorisation.

(a) $2x^2 - 4x = 2(x^2 - 2x) = ?$ (b) $10x - 5x^2 = x(10 - 5x) = ?$ (c) $4x^3 + 8x = 4(x^3 + 2x) = ?$ (d) $8xy + 16x^2 = x(8y + 16x) = ?$ (e) $5xy + 10x^2y^2 = 5(xy + 2x^2y^2) = ?$

3. Factorise the following:

- (a) 10a 15b (b) 50py 120p
- (c) 24abc 8ab (d) 6abc + 12bcd
- (e) $16m^2 + 12n^2$ (f) $p^2y + p^2y^2$

(g)
$$18s^2t - 12st^2$$
 (h) $10a + 15a^2$

- (i) $c c^2$ (j) $2a^2b^2 8a^2b$
- (k) $m^2n mnl$ (l) 6xy 3y + 9x

(m)
$$pqr + p^2 + pr$$
 (n) $abc + a^2b + bc$

(o) $8abc + 6ab^2c + 4abc^2$ (p) $5s^2t - 3st - 4st^2$