16 Inequalities

16.2 Solutions of Linear Inequalities

1.	Solve each inequality below and illustrate your solution on a number line.							
	(a) $2x + 3 \le 5$	(b) $3x - 4 > 11$	(c) $5x + 3 > 28$					
	(d) $5 - 2x \ge 11$	(e) $\frac{3x-5}{2} < 2$	(f) $3(4x+1) \ge -9$					
2.	Solve the following inequa	lities.						
	(a) $3x - 4 < 26$	(b) $6 - 4x > 18$	(c) $7x - 2 \le 12$					
	(d) $5x + 7 > -13$	(e) $\frac{1+2x}{5} > 3$	(f) $\frac{4-5x}{2} \le 7$					
3.	Solve each of the following	inequalities and illustrate each	ch solution on a number line.					
	(a) $9 \le 2x - 1 \le 15$	(b) $5 \le 3x +$	$14 \leq 29$					
	(c) $13 \le 5 - 4x < 25$	(d) $-2 \leq 2x$	$+1 \leq 5$					
4.	(a) Solve the inequality							
		7x+3 > 2x-15.						
	(b) Solve the inequality							
		2(3x-2)<11.	(SEG)					
5.	Find all integer values of <i>n</i>	which satisfy the inequality						
5.	The unmeger values of h	$1 \le 2n - 5 < 10.$						
		1	(SEG)					
6.	Solve the following inequa	lities for <i>x</i> .						
	(a) $1 + 3x < 7$ (b) $4x - 3 > 3x - 2$						
			(NEAB)					
7.	(a) List all the integer v	alues of <i>n</i> for which $-4 <$	$n+1 \leq 2.$					
	(b) Solve the inequality							
		3x+5 < 1-2x.	(SEG)					
0								
8.	x is a whole number such t							
		ll the possible values of <i>x</i> .						
	• • •	umber such that $-3 < y \le$ ble value of <i>xy</i> .	-1. Write down the					

(b) Solve 5n + 6 < 23.

(NEAB)

9. A sequence is generated as shown. (a)

Term	1st	2nd	3rd	4th	5th
Sequence	3	5	7	9	11

What is the *n*th term in the sequence?

(b) Another sequence is generated as shown.

Term	1st	2nd	3rd	4th
Sequence	4	7	12	19

What is the *n*th term in the sequence?

The *n*th term of a different sequence is 5n + 7. (c) Solve the inequality 5n + 7 < 82.

(SEG)

16.3 Inequalities Involving Quadratic Terms

1. Illustrate the solutions to the following inequalities on a number line.

(a)	$x^2 \le 4$	(b)	$x^2 \ge 1$	(c)	$x^2 \ge 9$
(d)	$x^2 < 36$	(e)	$x^2 \le 2.25$	(f)	$x^2 > 0.25$

2. Find the solutions of the following inequalities.

(a)	$x^2 + 5 \le 6$	(b)	$2x^2 - 5 \ge 27$	(c)	$5x^2 - 4 \le 16$
(d)	$9x^2 \leq 1$	(e)	$4x^2 \ge 25$	(f)	$16x^2 - 12 \ge 13$

 $2(x^2 - 4) < 10$ (h) $\frac{x^2 - 3}{2} \ge 23$ (i) $20 - 2x^2 \le 2$ (g)

Find the solutions of the following inequalities. 3.

- (c) (x-1)(x-2) < 0 (d) (x+5)(x-4) > 0
- (f) (x-1)x < 0(e) $x(x+5) \ge 0$

16.2

4. By factorising, solve each of the following inequalities.

	4.	Dyla	actorising, solve ea		10110	wing mequa	annies.		
		(a)	$x^2 + x - 2 \ge 0$		(b)	$x^2 - 5x +$	6 ≤ 0		
		(c)	$x^2 - 4x < 0$		(d)	$2x^2 + 3x -$	- 2 > 0	0	
		(e)	$x^2 + 6x + 8 \le 0$		(f)	$5x^2 - 15x$	≥ 0		
		(g)	$6x - 2x^2 > 0$		(h)	1 - 5x - 6	$5x^2 \leq 0$)	
	5.	Wha	area, A , in cm ² , of t is the:	_			luality	$9 \leq A \leq 36.$	
		(a) possi	maximum ible length of its sic	(b) les?	minir	num			
	6.	(a)	Factorise comple	tely 14	4n - 4n	n^2 .			
		(b)	Find the integer v	alues o	of <i>n</i> for	which 14n	$a - 4n^2$	> 0.	(MEG)
16.4	G	rap	hical App	oroa	ach	to In	equ	alities	
	1.	Illus	trate on a set of coo	ordinate	e axes e	ach of the f	ollowir	ng inequalities.	
		(a)	$y \leq x$	(b)	<i>y</i> >	<i>x</i> + 1	(c)	y < x - 2	
			$y \leq x + 4$						
		(g)	$2x + y \ge 4$	(h)	x - y	$v \ge 2$	(i)	x + 2y < 3	
	2.	For e	each region below,						
			-			which forms d by the sha		-	
		(a)	y 6 5 4 3 -6 - 5 - 4 - 3 - 2 - 1 0 -1 -2 -3 -4	1 2 3	4 5 6	(b)	-6 -5	$ \begin{array}{c} $	3 4 5 6
			- 5 - 6					-5	

3. On the same set of axes, shade the regions

 $x + y \ge 1, \quad x - y \le 2.$

Indicate the region satisfied by both inequalities.

4. Shade the region which satisfies

16.4

 $2 \leq x + y \leq 4.$

5. Shade the region which satisfies

 $-1 \le 2x + y < 2.$

16.5 Dealing with More than One Inequality

1. On a suitable set of axes, show by shading the region which satisfies both the inequalities.

(a)	$\begin{array}{l} x \ge 2 \\ x \le 4 \end{array}$	(b)	$\begin{array}{l} x > 1 \\ y \le 2 \end{array}$	(c)	$y \ge x$ $4 \ge x$
(d)	$\begin{array}{l} x+y \leq 1 \\ y > 2 \end{array}$		2x + y > 2 $2x + y < 1$	(f)	$\begin{array}{l} x \leq y \\ y \leq 1 \end{array}$
(g)	$y \ge 3x$ $x + y < 1$	(h)	$y \ge x$ $y \le 2x$	(i)	$y \ge x$ $y \le x + 2$

- 2. For each set of inequalities, draw graphs to show the region satisfied by them.
 - (a) $x \le 2, x \ge 1, y \ge 4, y \le 6$
 - (b) $x \ge -1, x \le 3, y \le 2, y \ge -3$
 - (c) $x \ge 1, y \ge 1, x + y \le 3$
 - (d) $x y < 3, x \ge 2, y \le 2$
 - (e) $y \le 2x, y \ge x, x \le 3$
 - (f) $x + y \ge 2, y \le x + 2, x \le 2$

16.5

7. (a) Using x and y axes from -5 to 5, show the region which satisfies all the inequalities

 $2y \le x+2, y \ge 1-x, y \ge x-1.$

Label this region R.

(b) Write down the coordinates of any point (x, y) which has whole number values for x and y and which lies inside the region R.

(SEG)

- 8. A contractor hiring earth moving equipment has a choice of two machines.
 - *Type A* costs £50 per day to hire, needs one person to operate it, and can move 30 tonnes of earth per day.
 - Type Bcosts $\pounds 20$ per day to hire, needs four people to operate it and can
move 70 tonnes of earth per day.

Let *x* denote the number of *Type A* machines hired and *y* the number of *Type B* machines hired.

- (a) The contractor has a labour force of 64 people. Explain why $x + 4y \le 64$.
- (b) The contractor can spend up to £1040 per day on hiring machines. Explain why $5x + 2y \le 104$.
- (c) The lines x + 4y = 64, 5x + 2y = 104, x = 0 and y = 0 are shown on the axes below.

By shading, identify the feasible region:

 $x \ge 0, y \ge 0, x + 4y \le 64, 5x + 2y \le 104.$

(d) The total weight of earth moved is given by w = 30x + 70y. Use your graph to find the values of x and y which satisfy all the inequalities and give a maximum value to w.

(SEG)